Self-dual Codes and Cyclic Codes over Fp + vFp

被引:0
|
作者
Zhang, Guanghui [1 ]
Li, Liangchen [1 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
关键词
Cyclic codes; self-dual codes; F-p + vF(p);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a criterion to judge whether a linear code over the ring is self-dual. Moreover, we introduce the generating set in standard form for the cyclic codes over F-p + vF(p) and characterize the structure of cyclic codes over the ring. Then we prove that cyclic codes over the ring are principally generated and obtain the unique generating idempotent for cyclic codes of length n, where n is coprime to p.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条
  • [31] Self-Dual Codes Over Chain Rings
    Simon Eisenbarth
    Gabriele Nebe
    Mathematics in Computer Science, 2020, 14 : 443 - 456
  • [32] SELF-DUAL CODES OVER GF(7)
    PLESS, VS
    TONCHEV, VD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (05) : 723 - 727
  • [33] SELF-DUAL CODES OVER GF(5)
    LEON, JS
    PLESS, V
    SLOANE, NJA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (02) : 178 - 194
  • [34] SELF-DUAL CODES OVER GF(4)
    MACWILLIAMS, FJ
    ODLYZKO, AM
    SLOANE, NJA
    WARD, HN
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (03) : 288 - 318
  • [35] SELF-DUAL CODES OVER GF(3)
    MALLOWS, CL
    PLESS, V
    SLOANE, NJA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (04) : 649 - 666
  • [36] MDS and self-dual codes over rings
    Guenda, Kenza
    Gulliver, T. Aaron
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1061 - 1075
  • [37] Self-Dual Codes Over Chain Rings
    Eisenbarth, Simon
    Nebe, Gabriele
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (02) : 443 - 456
  • [38] On the Classification of Self-Dual Codes over 𝔽5
    Masaaki Harada
    Patric R. J. Östergård
    Graphs and Combinatorics, 2003, 19 : 203 - 214
  • [39] Self-dual codes over Z(4)
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (02)
  • [40] GOOD p-ARY QUASIC-CYCLIC CODES FROM CYCLIC CODES OVER Fp+vFp
    Minjia SHI
    Shanlin YANG
    Shixin ZHU
    JournalofSystemsScience&Complexity, 2012, 25 (02) : 375 - 384