destiny: diffusion maps for large-scale single cell data in R

被引:364
|
作者
Angerer, Philipp [1 ]
Haghverdi, Laleh [1 ]
Buettner, Maren [1 ]
Theis, Fabian J. [1 ,2 ]
Marr, Carsten [1 ]
Buettner, Florian [1 ]
机构
[1] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math, Chair Math Modeling Biol Syst, Boltzmannstr 3, D-85748 Garching, Germany
基金
英国医学研究理事会;
关键词
D O I
10.1093/bioinformatics/btv715
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diffusion maps are a spectral method for non-linear dimension reduction and have recently been adapted for the visualization of single-cell expression data. Here we present destiny, an efficient R implementation of the diffusion map algorithm. Our package includes a single-cell specific noise model allowing for missing and censored values. In contrast to previous implementations, we further present an efficient nearest-neighbour approximation that allows for the processing of hundreds of thousands of cells and a functionality for projecting new data on existing diffusion maps. We exemplarily apply destiny to a recent time-resolved mass cytometry dataset of cellular reprogramming.
引用
收藏
页码:1241 / 1243
页数:3
相关论文
共 50 条
  • [1] Unfolding large-scale maps
    Jenkins, G
    GENOME, 2003, 46 (06) : 947 - 952
  • [2] STUDIES OF LARGE-SCALE MAPS
    Herbertson, A. J.
    GEOGRAPHICAL TEACHER, 1904, 2 (10): : 245 - 251
  • [3] Large-Scale Generation of Transit Maps from OpenStreetMap Data
    Brosi, Patrick
    Bast, Hannah
    CARTOGRAPHIC JOURNAL, 2023,
  • [4] SCANPY: large-scale single-cell gene expression data analysis
    F. Alexander Wolf
    Philipp Angerer
    Fabian J. Theis
    Genome Biology, 19
  • [5] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    GENOME BIOLOGY, 2018, 19
  • [6] HGC: fast hierarchical clustering for large-scale single-cell data
    Zou, Ziheng
    Hua, Kui
    Zhang, Xuegong
    BIOINFORMATICS, 2021, 37 (21) : 3964 - 3965
  • [7] Measuring cosmic expansion and large-scale structure with Destiny
    Benford, D. J.
    Lauer, T. R.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2007, 122 (9-11): : 1227 - 1230
  • [8] POIsam: a System for Efficient Selection of Large-scale Geospatial Data on Maps
    Guo, Tao
    Li, Mingzhao
    Li, Peishan
    Bao, Zhifeng
    Cong, Gao
    SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1677 - 1680
  • [9] Analysis of large-scale maps symbols
    Kot'ka, Vladimir
    Chromcak, Jakub
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 450 - 453
  • [10] Extendability of large-scale Lipschitz maps
    Lang, U
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (10) : 3975 - 3988