Equilibrium shapes of tubular lipid membranes

被引:3
|
作者
Jelercic, Urska [1 ]
机构
[1] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia
关键词
TENSION; VESICLES; CURVATURE; TRANSPORT;
D O I
10.1039/c6sm02385a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tubular vesicles represent abundant structural motifs which are observed both in experiments and in nature. We analyse them within the theory of bending elasticity and determine the equilibrium solutions at fixed volume, surface area, and segment length without imposing any specific symmetry or periodicity. We identify four different non-periodic equilibrium shapes. Depending on the precise value of the constraints or the corresponding Lagrange multipliers, these four shapes include: (i) snake-like and (ii) helical structures, (iii) tubes with a spherical body, and (iv) tubes with a discoidal body. However different in the details, all of the shapes have the same general cylindrical morphology which is either globally modulated or is a superposition of an additional structural motif and the cylinder. These results point to a great significance of the circular cylindrical shape and offer a comprehensive and general analysis of the shape of tubular vesicles.
引用
收藏
页码:3048 / 3052
页数:5
相关论文
共 50 条
  • [21] MI-MII EQUILIBRIUM OF RHODOPSIN IN RECOMBINANT MEMBRANES IS MODULATED BY LIPID HEADGROUPS
    GIBSON, NJ
    BROWN, MF
    FASEB JOURNAL, 1992, 6 (01): : A84 - A84
  • [22] Equilibrium or Quenched: Fundamental Differences between Lipid Monolayers, Supported Bilayers, and Membranes
    Watkins, Erik B.
    Miller, Chad E.
    Liao, Wei-Po
    Kuhl, Tonya L.
    ACS NANO, 2014, 8 (04) : 3181 - 3191
  • [23] Out-of-equilibrium active membranes: incorporation of bacteriorhodopsin in a floating lipid bilayer
    Tetiana, M.
    Gerelli, Y.
    Fragneto, G.
    Charitat, T.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2019, 48 : S210 - S210
  • [24] Equilibrium shapes of flat knots
    Metzler, R
    Hanke, A
    Dommersnes, PG
    Kantor, Y
    Kardar, M
    PHYSICAL REVIEW LETTERS, 2002, 88 (18) : 4 - 188101
  • [25] About stability of equilibrium shapes
    Dambrine, M
    Pierre, M
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (04): : 811 - 834
  • [26] The equilibrium of membranes
    Pailloux, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1938, 206 : 1445 - 1449
  • [27] THE EQUILIBRIUM SHAPES OF SMALL PARTICLES
    WANG, SW
    FALICOV, LM
    SEARCY, AW
    SURFACE SCIENCE, 1984, 143 (2-3) : 609 - 625
  • [28] EQUILIBRIUM SHAPES OF SEMICOHERENT INCLUSIONS
    ROTTMAN, C
    JOURNAL OF MATERIALS RESEARCH, 1992, 7 (04) : 1029 - 1036
  • [29] EQUILIBRIUM FACETING SHAPES FOR QUASICRYSTALS
    INGERSENT, K
    STEINHARDT, PJ
    PHYSICAL REVIEW B, 1989, 39 (02): : 980 - 992
  • [30] SHAPES OF THIN SOAP MEMBRANES
    FAIG, W
    PHOTOGRAMMETRIC ENGINEERING, 1971, 37 (10): : 1075 - &