Equilibrium shapes of tubular lipid membranes

被引:3
|
作者
Jelercic, Urska [1 ]
机构
[1] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia
关键词
TENSION; VESICLES; CURVATURE; TRANSPORT;
D O I
10.1039/c6sm02385a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tubular vesicles represent abundant structural motifs which are observed both in experiments and in nature. We analyse them within the theory of bending elasticity and determine the equilibrium solutions at fixed volume, surface area, and segment length without imposing any specific symmetry or periodicity. We identify four different non-periodic equilibrium shapes. Depending on the precise value of the constraints or the corresponding Lagrange multipliers, these four shapes include: (i) snake-like and (ii) helical structures, (iii) tubes with a spherical body, and (iv) tubes with a discoidal body. However different in the details, all of the shapes have the same general cylindrical morphology which is either globally modulated or is a superposition of an additional structural motif and the cylinder. These results point to a great significance of the circular cylindrical shape and offer a comprehensive and general analysis of the shape of tubular vesicles.
引用
收藏
页码:3048 / 3052
页数:5
相关论文
共 50 条
  • [1] Tubular lipid membranes pulled from vesicles: Dependence of system equilibrium on lipid bilayer curvature
    I. Yu. Golushko
    S. B. Rochal
    Journal of Experimental and Theoretical Physics, 2016, 122 : 169 - 175
  • [2] Tubular lipid membranes pulled from vesicles: Dependence of system equilibrium on lipid bilayer curvature
    Golushko, I. Yu.
    Rochal, S. B.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 122 (01) : 169 - 175
  • [3] Equilibrium shapes of planar elastic membranes
    Marple, Gary R.
    Purohit, Prashant K.
    Veerapaneni, Shravan
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [4] Equilibrium shapes of inflated inextensible membranes
    Ligaro, S. S.
    Barsotti, R.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (21) : 5584 - 5598
  • [5] Cylindrical equilibrium shapes of fluid membranes
    Vassilev, V. M.
    Djondjorov, P. A.
    Mladenov, I. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (43)
  • [6] PROTON EQUILIBRIUM ON BILAYER LIPID-MEMBRANES
    MATINIAN, NS
    ABIDOR, IG
    DOKLADY AKADEMII NAUK SSSR, 1984, 274 (05): : 1226 - 1229
  • [7] Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes
    Xiong, Kai
    Zhao, Jiayin
    Yang, Daowen
    Cheng, Qingwen
    Wang, Jiuling
    Ji, Hongbing
    SOFT MATTER, 2017, 13 (26) : 4644 - 4652
  • [8] Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures
    Ivalo M. Mladenov
    Peter A. Djondjorov
    Mariana Ts. Hadzhilazova
    Vassil M. Vassilev
    Communications in Theoretical Physics, 2013, 59 (02) : 213 - 228
  • [9] Non-equilibrium Thermodynamics and Hydrodynamics of Lipid Membranes
    Sahu, Amaresh
    Tchoufag, Joel
    Omar, Yannick Azhri Din
    Pan, Yulong
    Mandadapu, Kranthi K.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 165A - 165A
  • [10] Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures
    Mladenov, Ivailo M.
    Djondjorov, Peter A.
    Hadzhilazova, Mariana Ts
    Vassilev, Vassil M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (02) : 213 - 228