We study point symmetries of the Robinson-Trautman equation. The cases of one- and two-dimensional algebras of infinitesimal symmetries are discussed in detail. The corresponding symmetry reductions of the equation are given. Higher dimensional symmetries are shortly discussed. It turns out that all known exact solutions of the Robinson-Trautman equation are symmetric.
机构:
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Beijing Inst Math Sci & Applicat BIMSA, Beijing 101408, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Adami, H.
Parvizi, A.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, IranTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Parvizi, A.
Sheikh-Jabbari, M. M.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, IranTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Sheikh-Jabbari, M. M.
Taghiloo, V.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
Inst Adv Studies Basic Sci IASBS, Dept Phys, POB 45137-66731, Zanjan, IranTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China