Solutions of functional differential equation of pointwise type (FDEPT) are in one-to-one correspondence with the traveling-wave type solutions for the canonically induced infinite-dimensional ordinary differential equation and vice versa. In particular, such infinite-dimensional ordinary differential equations are finite difference analogues of equations of mathematical physics. An important class of traveling-wave type solutions is made up of periodic and bounded traveling-wave type solutions. On the other hand, an important class of such systems is systems with strongly nonlinear potentials (polynomial potentials), for which periodic and bounded traveling wave solutions are studied. Such a problem is equivalent to the study of periodic and bounded solutions of the induced FDEPT to which the present work is devoted.