Environmental testing of long wave infrared (LWIR) windows

被引:4
|
作者
Kelly, ES
Ondercin, RJ
Detrio, JA
Greason, PR
机构
来源
WINDOW AND DOME TECHNOLOGIES AND MATERIALS V | 1997年 / 3060卷
关键词
IR windows; rain erosion; sand erosion; combined effects; ZnS;
D O I
10.1117/12.277066
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Accurate and reliable testing is paramount to the development of LWIR window materials. Without appropriate characterization and testing, improvements to existing technologies are impossible to document with certainty. Reliable and repeatable testing provides the data needed to measure advancements and identify improvements in any technology. No single test can be completely definitive, and the continuous evaluation of emerging technologies using different test methods under varying conditions is critical when evaluating a new material's capability. The environmental testing of infrared (IR) window materials has traditionally consisted of rain erosion testing, single impact water jet testing, and sand erosion testing. While these three tests provide the materials engineer with significant insight into the durability of a window material, these tests have generally ignored the combined effect of rain and sand, This paper looks at the combined effect of rain and sand erosion on a standard LWIR window material, zinc sulfide (ZnS).
引用
收藏
页码:68 / 75
页数:8
相关论文
共 50 条
  • [41] Single photon detection in the long wave infrared
    Ueda, T.
    An, Z.
    Hirakawa, K.
    Komiyama, S.
    NARROW GAP SEMICONDUCTORS 2007, 2008, 119 : 171 - +
  • [42] Comparison of scene contrast temperature in mid-wave infrared and long-wave infrared
    Jordan, Shane
    Driggers, Ronald
    Furxhi, Orges
    Leslie, Patrick
    Cavanaugh, Col
    Renshaw, Kyle
    Jacobs, Eddie
    OPTICAL ENGINEERING, 2023, 62 (11)
  • [43] Detector spatial response testing of LWIR FPAs
    Lindahl, K. A.
    Burmester, W.
    Whiteaker, K. L.
    Banks, R.
    Penniman, E. E.
    Johnson, P. B.
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XVIII, 2007, 6543
  • [44] Longwave infrared (LWIR) coded aperture dispersive spectrometer
    Fernandez, C.
    Guenther, B. D.
    Gehm, M. E.
    Brady, D. J.
    Sullivan, M. E.
    OPTICS EXPRESS, 2007, 15 (09) : 5742 - 5753
  • [45] HgTe Colloidal Quantum Dot LWIR Infrared Photodetectors
    Pimpinella, R. E.
    Ciani, A.
    Guyot-Sionnest, P.
    Grein, C.
    LOW-DIMENSIONAL MATERIALS AND DEVICES, 2015, 9553
  • [46] Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates
    Yang, Clayton S. -C.
    Jin, Feng
    Trivedi, Sudhir B.
    Brown, Ei E.
    Hommerich, Uwe
    Tripathi, Ashish
    Samuels, Alan C.
    APPLIED SPECTROSCOPY, 2017, 71 (04) : 728 - 734
  • [47] Fusion of long-wave and mid-wave infrared images
    Guenyel, Bertan
    Bala, Emrah
    Akar, Gozde Bozdagi
    2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 834 - 837
  • [48] GAAS/ALGAAS QUANTUM-WELL, LONG-WAVELENGTH INFRARED (LWIR) DETECTOR WITH A DETECTIVITY COMPARABLE TO HGCDTE
    LEVINE, BF
    BETHEA, CG
    HASNAIN, G
    WALKER, J
    MALIK, RJ
    ELECTRONICS LETTERS, 1988, 24 (12) : 747 - 749
  • [49] Measured comparison of the inversion periods for polarimetric and conventional thermal long-wave IR (LWIR) imagery
    Felton, M.
    Gurton, K. P.
    Roth, L. E.
    Pezzaniti, J. L.
    Chenault, D. B.
    POLARIZATION SCIENCE AND REMOTE SENSING IV, 2009, 7461
  • [50] Bicolor Regulation of an Ultrathin Absorber in the Mid-Wave Infrared and Long-Wave Infrared Regimes
    Jiang, Xinpeng
    Wang, Xinfei
    Nong, Jie
    Zhu, Gangyi
    He, Xin
    Du, Te
    Ma, Hansi
    Zhang, Zhaojian
    Chen, Huan
    Yu, Yang
    Liu, Dongqing
    Yan, Peiguang
    Wu, Jiagui
    Zhang, Zhenfu
    Yang, Junbo
    ACS PHOTONICS, 2024, 11 (01) : 218 - 229