Exact Optimal Stopping for Multidimensional Linear Switching Diffusions

被引:0
|
作者
Ernst, Philip [1 ,2 ]
Mei, Hongwei [3 ]
机构
[1] Rice Univ, Dept Stat, Houston, TX 77005 USA
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
[3] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
quickest detection; switching diffusions; optimal stopping; free-boundary problem; BOUNDARY;
D O I
10.1287/moor.2022.1312
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper studies a class of multidimensional optimal stopping problems with infinite horizon for linear switching diffusions. There are two main novelties in the optimal problems considered: The underlying stochastic process has discontinuous paths, and the cost function is not necessarily integrable on the entire time horizon, where the latter is often a key assumption in classical optimal stopping theory for diffusions. Under relatively mild conditions, we show, for the class of multidimensional optimal stopping problems under consideration, that the first entry time of the stopping region is an optimal stopping time. Further, we prove that the corresponding optimal stopping boundaries can be represented as the unique solution to a nonlinear integral equation. We conclude with an application of our results to the problem of quickest real-time detection of a Markovian drift.
引用
收藏
页码:1589 / 1606
页数:18
相关论文
共 50 条
  • [31] Optimal stopping of one-dimensional diffusions with integral criteria
    Guerra, Manuel
    Nunes, Claudia
    Oliveira, Carlos
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)
  • [32] Optimal stopping of conditional McKean-Vlasov jump diffusions
    Agram, Nacira
    Oksendal, Bernt
    [J]. SYSTEMS & CONTROL LETTERS, 2024, 188
  • [33] Singularly perturbed multidimensional switching diffusions with fast and slow switchings
    Yin, G
    Kniazeva, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (02) : 605 - 630
  • [34] Exact Fast Computation of Optimal Filter in Gaussian Switching Linear Systems
    Derrode, Stephane
    Pieczynski, Wojciech
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (07) : 701 - 704
  • [35] OPTIMAL STOPPING OF CONTINUOUS MULTIDIMENSIONAL TIME PROCESS
    DALANG, RC
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1059 : 379 - 390
  • [36] COMPARATIVE STATICS FOR MULTIDIMENSIONAL OPTIMAL STOPPING PROBLEMS
    BROCK, WA
    ROTHSCHILD, M
    [J]. LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1986, 264 : 124 - 138
  • [37] Multidimensional Fuzzy Optimal Control with Application to Optimal Stopping Time
    Wang, Beibei
    Zhu, Yuanguo
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2009, 8 : 560 - 566
  • [38] Optimal Stopping With Exact Confidence on Remaining Defects
    Dalal, S. R.
    Mallows, C. L.
    [J]. TECHNOMETRICS, 2008, 50 (03) : 397 - 406
  • [39] CONSTRUCTION OF THE VALUE FUNCTION AND OPTIMAL RULES IN OPTIMAL STOPPING OF ONE-DIMENSIONAL DIFFUSIONS
    Helmes, Kurt
    Stockbridge, Richard H.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (01) : 158 - 182
  • [40] A CLASS OF SOLVABLE OPTIMAL STOPPING PROBLEMS OF SPECTRALLY NEGATIVE JUMP DIFFUSIONS
    Alvarez, Luis H. R. E.
    Matomaki, Pekka
    Rakkolainen, Teppo A.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (04) : 2224 - 2249