A search for interstellar gas-phase CO2 gas: Solid state abundance ratios

被引:0
|
作者
vanDishoeck, EF
Helmich, FP
deGraauw, T
Black, JH
Boogert, ACA
Ehrenfreund, P
Gerakines, PA
Lacy, JH
Millar, TJ
Schutte, WA
Tielens, AGGM
Whittet, DCB
Boxhoorn, DR
Kester, DJM
Leech, K
Roelfsema, PR
Salama, A
Vandenbussche, B
机构
[1] SRON, NL-9700 AV GRONINGEN, NETHERLANDS
[2] CHALMERS UNIV TECHNOL, ONSALA SPACE OBSERV, S-43992 ONSALA, SWEDEN
[3] KAPTEYN ASTRON INST, NL-9700 AV GRONINGEN, NETHERLANDS
[4] RENSSELAER POLYTECH INST, DEPT PHYS APPL PHYS & ASTRON, TROY, NY 12180 USA
[5] UNIV MANCHESTER, INST SCI & TECHNOL, DEPT PHYS, MANCHESTER M60 1QD, LANCS, ENGLAND
[6] NASA, AMES RES CTR, MOFFETT FIELD, CA 94035 USA
[7] ESA, DIV ASTROPHYS, SCI OPERAT CTR, ISO, E-28080 VILLAFRANCA, MADRID, SPAIN
[8] KATHOLIEKE UNIV LEUVEN, INST STERRENKUNDE, B-3001 HEVERLEE, BELGIUM
[9] UNIV TEXAS, DEPT ASTRON, AUSTIN, TX 78712 USA
关键词
ISM; abundances; molecules; individual; AFGL; 2591; 4176; 2136; NGC; 7538; IRS9;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present searches for gas-phase CO2 features in the ISO-SWS infrared spectra of four deeply embedded massive young stars, which all show strong solid CO2 absorption. The abundance of gas-phase CO2 is at most 2. 10(-7) with respect to H-2, and is less than 5% of that in the solid phase. This is in strong contrast to CO, which is a factor of 10-100 more abundant in the gas than in solid form in these objects. The gas/solid state ratios of CO2, CO and H2O are discussed in terms of the physical and chemical state of the clouds.
引用
收藏
页码:L349 / L352
页数:4
相关论文
共 50 条
  • [31] How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst
    Yan, Tingjiang
    Li, Na
    Wang, Linlin
    Liu, Qin
    Ali, Feysal M.
    Wang, Lu
    Xu, Yangfan
    Liang, Yan
    Dai, Ying
    Huang, Baibiao
    You, Jinmao
    Ozin, Geoffrey A.
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) : 3054 - 3063
  • [32] Infrared Spectroscopy of Gas-Phase MnxOy(CO2)z+ ComplexesIS
    Zimmermann, Nina
    Bernhardt, Thorsten M.
    Bakker, Joost M.
    Barnett, Robert N.
    Landman, Uzi
    Lang, Sandra M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (08): : 1561 - 1566
  • [33] Continuous Gas-Phase Hydroformylation of Propene with CO2 Using SILP Catalysts
    Hatanaka, Masataka
    Yasuda, Tomohiro
    Uchiage, Eriko
    Nishida, Mayumi
    Tominaga, Ken-ichi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35): : 11674 - 11680
  • [34] Tunneling Enhancement of the Gas-Phase CH + CO2 Reaction at Low Temperature
    Nunez-Reyes, Dianailys
    Hickson, Kevin M.
    Loison, Jean-Christophe
    Spada, Rene F. K.
    Vichietti, Rafael M.
    Machado, Francisco B. C.
    Haiduke, Roberto L. A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (51): : 10717 - 10725
  • [35] Infrared and raman spectroscopy of gas-phase and matrix isolated CO2 dimers
    Vigasin, AA
    13TH SYMPOSIUM AND SCHOOL ON HIGH-RESOLUTION MOLECULAR SPECTROSCOPY, 2000, 4063 : 39 - 46
  • [36] Rate constant of the gas-phase reaction between Fe atoms and CO2
    Smirnov, V. N.
    KINETICS AND CATALYSIS, 2008, 49 (05) : 607 - 609
  • [37] New models of interstellar gas-grain chemistry -: III.: Solid CO2
    Ruffle, DP
    Herbst, E
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 324 (04) : 1054 - 1062
  • [38] Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2
    Liu, Chongming
    Nishshanka, Upul
    Attygalle, Athula B.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (05) : 927 - 939
  • [39] Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles
    Merino-Garcia, I.
    Albo, J.
    Irabien, A.
    NANOTECHNOLOGY, 2018, 29 (01)
  • [40] Rate constant of the gas-phase reaction between Fe atoms and CO2
    V. N. Smirnov
    Kinetics and Catalysis, 2008, 49 : 607 - 609