The control system for the front-end electronics of the ALICE time projection chamber

被引:7
|
作者
Richter, M. [1 ]
Alme, J.
Alt, T.
Bablok, S.
Campagnolo, R.
Frankenfeld, U.
Gutierrez, C. Gonzalez
Keidel, R.
Kofler, Ch.
Krawutschke, T.
Larsen, D.
Lindenstruth, V.
Mota, B.
Musa, L.
Roed, K.
Rohrich, D.
Stockmeier, M. R.
Tilsner, H.
Ullaland, K.
机构
[1] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway
[2] Univ Heidelberg, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[3] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland
[4] GSI Darmstadt, D-64291 Darmstadt, Germany
[5] Univ Appl Sci Worms, Ctr Technol Transfer & Telecommun, D-67549 Worms, Germany
[6] Univ Appl Sci Cologne, Inst Commun Engn, D-50679 Cologne, Germany
[7] Bergen Univ Coll, Fac Engn, N-5020 Bergen, Norway
关键词
control systems; distributed; computing; gas detectors; microcontrollers; monitoring; nuclear physics; particle measurements;
D O I
10.1109/TNS.2006.874726
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ALICE detector is a dedicated heavy-ion detector currently built at the Large Hadron Collider (LHC) at CERN. The detector control system (DCS) covers the task of controlling, configuring and monitoring the detector. One sub-system is the control system.for the Front-end electronics of the time projection chamber (TPC). It controls in total 216 readout systems with 4356 Front-End Cards serving roughly 560 000 channels. The system consists of a large number of distributed nodes in a layer-structured hierarchy. The low-level node controlling the Front-end electronics is an embedded computer system, the DCS board, which provides the opportunity to run a light-weight Linux system on the card. The board interfaces to the Front-end electronics via a dedicated hardware interface and connects to the higher DCS-layers via the DIM communication framework over Ethernet. Since the experiment will be running in a radiation environment, fault tolerance, error correction and system stability in general are major concerns. Already the low level devices carry out intelligent error handling and act automatically upon several conditions. This paper presents the architecture of the system, the application of the DCS board and experiences from integration tests.
引用
收藏
页码:980 / 985
页数:6
相关论文
共 50 条
  • [41] The LHCb front-end electronics and data acquisition system
    Jost, B
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 453 (1-2): : 377 - 381
  • [42] The laser calibration system of the ALICE time projection chamber
    Renault, G
    Nielsen, BS
    Westergaard, J
    Gaardhoje, JJ
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (12) : 1671 - 1674
  • [43] Architecture and Implementation of the Front-End Electronics of the Time Projection Chambers in the T2K Experiment
    Baron, P.
    Besin, D.
    Calvet, D.
    Coquelet, C.
    De La Broise, X.
    Delagnes, E.
    Druillole, F.
    Le Coguie, A.
    Monmarthe, E.
    Zonca, E.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (02) : 406 - 411
  • [44] Architecture and Implementation of the Front-End Electronics of the Time Projection Chambers in the T2K Experiment
    Baron, P.
    Besin, D.
    Calvet, D.
    Coquelet, C.
    De La Broise, X.
    Delagnes, E.
    Druillole, F.
    Le Coguie, A.
    Monmarthe, E.
    Zonca, E.
    [J]. 2009 16TH IEEE-NPSS REAL TIME CONFERENCE, 2009, : 43 - 48
  • [45] Development of a front-end electronics for thin-gap resistive plate chamber
    Ge, J. J.
    Li, Q. Y.
    Su, C.
    Xue, Z. W.
    Liu, Y. W.
    Sun, Y. J.
    Liang, H.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (11)
  • [46] Front-End electronics development for the new Resistive Plate Chamber detector of HADES
    Gil, A.
    Belver, D.
    Cabanelas, P.
    Diaz, J.
    Garzon, A.
    Gonzalez-Diaz, D.
    Koenig, W.
    Lange, J. S.
    Marin, J.
    Montes, N.
    Skott, P.
    Traxler, M.
    [J]. JOURNAL OF INSTRUMENTATION, 2007, 2
  • [47] Characterization of a front-end electronics for the monitoring and control of hadrontherapy beams
    La Rosa, A.
    Donetti, M.
    Borri, M.
    Rivero, F.
    Attili, A.
    Bourhaleb, F.
    Cirio, R.
    Garella, M. A.
    Giordanengo, S.
    Givehchi, N.
    Mazza, G.
    Marchetto, F.
    Pardoa, J.
    Pecka, A.
    Peroni, C.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 586 (02): : 270 - 275
  • [48] Front-end electronics for imaging detectors
    De Geronimo, G
    O'Connor, P
    Radeka, V
    Yu, B
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 471 (1-2): : 192 - 199
  • [49] The front-end electronics for LHCb calorimeters
    Beigbeder, C
    Bernier, R
    Breton, D
    Cacéres, T
    Cros, P
    Hrisoho, A
    Tocut, V
    Truong, K
    [J]. PROCEEDINGS OF THE FIFTH WORKSHOP ON ELECTRONICS FOR LHC EXPERIMENTS, 1999, : 242 - 246
  • [50] Front-end electronics for the GAPS tracker
    Scotti, Valentina
    Boiano, Alfonso
    Fabris, Lorenzo
    Manghisoni, Massimo
    Osteria, Giuseppe
    Perfetto, Francesco
    Re, Valerio
    Riceputi, Elisa
    Zampa, Gianluigi
    [J]. 36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,