Dynamic electrostatic force-gradient microscopy employing mechanoelectric cross modulation

被引:0
|
作者
Weng, Z. [1 ]
Kaminski, T. [1 ]
Bridges, G. E. [1 ]
Thomson, D. J. [1 ]
机构
[1] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB R3T 5V6, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1116/1.2180268
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This article describes a dynamic mode electrostatic force-gradient microscopy technique capable of high-frequency voltage measurement. The technique employs a wide-bandwidth implementation of a mechanoelectric cross-modulation scheme, where a microfabricated probe is driven by an amplitude-modulated sampling pulse and the sample is mechanically vibrated, at a frequency different to that of electrical modulation. The resulting probe oscillation at the cross-modulation frequency provides local high-frequency voltage information. Unlike the force detection method, which is susceptible to poor resolution due to large coupling to the probe tip sidewall and cantilever, the force-gradient method provides an enhancement of spatial resolution. A significant reduction of interference from adjacent signal traces is demonstrated when performing integrated circuit testing. Quantitative high-frequency voltage measurement with high accuracy is achieved by using a null-force-gradient approach, but at the expense of reduced sensitivity. (c) 2006 American Vacuum Society.
引用
收藏
页码:673 / 677
页数:5
相关论文
共 50 条
  • [41] Magnetic force microscopy of alternating magnetic field gradient by frequency modulation of tip oscillation
    Saito, H.
    Ikeya, H.
    Egawa, G.
    Ishio, S.
    Yoshimura, S.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [42] Broadband nanodielectric spectroscopy by means of amplitude modulation electrostatic force microscopy (AM-EFM)
    Schwartz, G. A.
    Riedel, C.
    Arinero, R.
    Tordjeman, Ph.
    Alegria, A.
    Colmenero, J.
    ULTRAMICROSCOPY, 2011, 111 (08) : 1366 - 1369
  • [43] Direct imaging method of frequency response of capacitance in dual bias modulation electrostatic force microscopy
    Fukuzawa, Ryota
    Takahashi, Takuji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (07)
  • [44] Cross-sectional investigation by dual bias modulation electrostatic force microscopy on Si/Si junction fabricated by surface-activated bonding
    Kobayashi, Daichi
    Fukuzawa, Ryota
    Shigekawa, Naoteru
    Liang, Jianbo
    Takahashi, Takuji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (04)
  • [45] Surface characterization of cross-linked elastomers by shear modulation force microscopy
    Zhang, Y
    Ge, S
    Rafailovich, MH
    Sokolov, JC
    Colby, RH
    POLYMER, 2003, 44 (11) : 3327 - 3332
  • [46] Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
    Higgins, MJ
    Riener, CK
    Uchihashi, T
    Sader, JE
    McKendry, R
    Jarvis, SP
    NANOTECHNOLOGY, 2005, 16 (03) : S85 - S89
  • [47] Mapping van der Waals forces with frequency modulation dynamic force microscopy
    Polesel-Maris, J.
    Guo, H.
    Zambelli, T.
    Gauthier, S.
    NANOTECHNOLOGY, 2006, 17 (16) : 4204 - 4211
  • [48] Reversible short-range electrostatic imaging in frequency modulation atomic force microscopy on metallic surfaces
    Dieska, P
    Stich, I
    Pérez, R
    NANOTECHNOLOGY, 2004, 15 (02) : S55 - S59
  • [49] Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces
    Sommerhalter, C
    Glatzel, T
    Matthes, TW
    Jäger-Waldau, A
    Lux-Steiner, MC
    APPLIED SURFACE SCIENCE, 2000, 157 (04) : 263 - 268
  • [50] Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
    Balke, Nina
    Jesse, Stephen
    Carmichael, Ben
    Okatan, M. Baris
    Kravchenko, Ivan I.
    Kalinin, Sergei V.
    Tselev, Alexander
    NANOTECHNOLOGY, 2017, 28 (06)