Superstatistical generalizations of Wishart-Laguerre ensembles of random matrices

被引:30
|
作者
Abul-Magd, A. Y. [1 ]
Akemann, G. [2 ,3 ]
Vivo, P. [4 ]
机构
[1] Sinai Univ, Fac Engn Sci, Al Arish, Egypt
[2] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[3] Brunel Univ, BURSt Res Ctr, Uxbridge UB8 3PH, Middx, England
[4] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
基金
英国工程与自然科学研究理事会;
关键词
DIRAC OPERATOR; EIGENVALUE; UNIVERSALITY; STATISTICS; CORRELATORS; SPECTRUM; MODELS; NOISE;
D O I
10.1088/1751-8113/42/17/175207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Beck and Cohen's superstatistics, we introduce in a systematic way a family of generalized Wishart-Laguerre ensembles of random matrices with Dyson index beta = 1, 2 and 4. The entries of the data matrix are Gaussian random variables whose variances eta fluctuate from one sample to another according to a certain probability density f (eta) and a single deformation parameter gamma. Three superstatistical classes for f (eta) are usually considered: chi(2)-, inverse chi(2)- and log-normal distributions. While the first class, already considered by two of the authors, leads to a power-law decay of the spectral density, we here introduce and solve exactly a superposition of Wishart-Laguerre ensembles with inverse chi(2)-distribution. The corresponding macroscopic spectral density is given by a gamma-deformation of the semi-circle and Marcenko-Pastur laws, on a non-compact support with exponential tails. After discussing in detail the validity of Wigner's surmise in the Wishart-Laguerre class, we introduce a generalized gamma-dependent surmise with stretched-exponential tails, which well approximates the individual level spacing distribution in the bulk. The analytical results are in excellent agreement with numerical simulations. To illustrate our findings we compare the chi(2)- and inverse chi(2)-classes to empirical data from financial covariance matrices.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Deformed ensembles of random matrices
    Peche, Sandrine
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1159 - 1174
  • [22] Disordered ensembles of random matrices
    Bohigas, O.
    de Carvalho, J. X.
    Pato, M. P.
    PHYSICAL REVIEW E, 2008, 77 (01)
  • [23] Nonintersecting Brownian interfaces and Wishart random matrices
    Nadal, Celine
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [24] NON-HERMITIAN EXTENSIONS OF WISHART RANDOM MATRIX ENSEMBLES
    Akemann, Gernot
    ACTA PHYSICA POLONICA B, 2011, 42 (05): : 901 - 921
  • [25] Smallest eigenvalue density for regular or fixed-trace complex Wishart-Laguerre ensemble and entanglement in coupled kicked tops
    Kumar, Santosh
    Sambasivam, Bharath
    Anand, Shashank
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (34) : 1 - 23
  • [26] Large deviations of the maximum eigenvalue in Wishart random matrices
    Vivo, Pierpaolo
    Majumdar, Satya N.
    Bohigas, Oriol
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (16) : 4317 - 4337
  • [27] Eigenvalue density of correlated complex random Wishart matrices
    Simon, SH
    Moustakas, AL
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [28] EIGENVALUE MOMENTS FOR ENSEMBLES OF RANDOM MATRICES
    MCDONALD, JF
    JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) : 542 - &
  • [29] Correlations in invariant ensembles of random matrices
    Freilikher, V
    Kanzieper, E
    Yurkevich, I
    FIZIKA NIZKIKH TEMPERATUR, 1996, 22 (07): : 772 - 784
  • [30] On Universality for Orthogonal Ensembles of Random Matrices
    M. Shcherbina
    Communications in Mathematical Physics, 2009, 285 : 957 - 974