Statistical methods of automatic spectral classification and their application to the Hamburg/ESO Survey

被引:33
|
作者
Christlieb, N
Wisotzki, L
Grasshoff, G
机构
[1] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany
[2] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[3] Univ Bern, Inst Philosophie, CH-3012 Bern, Switzerland
关键词
surveys; methods : data analysis; stars : fundamental parameters; Galaxy : halo;
D O I
10.1051/0004-6361:20020830
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We employ classical statistical methods of multivariate classification for the exploitation of the stellar content of the Hamburg/ESO objective prism survey (HES). In a simulation study we investigate the precision of a three-dimensional classification (T-eff, logg, [Fe/H]) achievable in the HES for stars in the effective temperature range 5200 K < T-eff < 6800 K, using Bayes classification. The accuracy in temperature determination is better than 400 K for HES spectra with S/N > 10 (typically corresponding to B-J < 16.5). The accuracies in log g and [Fe/H] are better than 0.68 dex in the same S/N range. These precisions allow for a very efficient selection of metal-poor stars in the HES. We present a minimum cost rule for compilation of complete samples of objects of a given class, and a rejection rule for identification of corrupted or peculiar spectra. The algorithms we present are being used for the identification of other interesting objects in the HES data base as well, and they are applicable to other existing and future large data sets, such as those to be compiled by the DIVA and GAIA missions.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [41] The Hamburg/ESO R-process enhanced star survey (HERES) II. Spectroscopic analysis of the survey sample
    Barklem, P.S. (barklem@astro.uu.se), 1600, EDP Sciences (439):
  • [42] The Hamburg/ESO R-process enhanced star survey (HERES) - II. Spectroscopic analysis of the survey sample
    Barklem, PS
    Christlieb, N
    Beers, TC
    Hill, V
    Bessell, MS
    Holmberg, J
    Marsteller, B
    Rossi, S
    Zickgraf, FJ
    Reimers, D
    ASTRONOMY & ASTROPHYSICS, 2005, 439 (01) : 129 - +
  • [43] A statistical signature for automatic dialogue classification
    Pesarin, A.
    Cristani, M.
    Murino, V.
    Drioli, C.
    Perina, A.
    Tavano, A.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 547 - +
  • [44] Investigation and application of automatic survey instrument of dynamic spectral response on photoelectronic materials
    Chang, Benkang, 1600, East China Inst of Technology, Nanjing, China (19):
  • [45] Application of statistical pattern classification methods for damage detection to field data
    Cabrera, Carlos
    Cheung, Allen
    Sarabandi, Pooya
    Nair, K. Krishnan
    Kiremidjian, Anne
    NONDESTRUCTIVE CHARACTERIZATION FOR COMPOSITE MATERIALS, AEROSPACE ENGINEERING, CIVIL INFRASTRUCTURE, AND HOMELAND SECURITY 2007, 2007, 6531
  • [46] Application of Statistical Methods for Classification of Varietal and Regional Origin of White Wines
    Titarenko, V. O.
    Khalafyan, A. A.
    Temerdashev, Z. A.
    Kaunova, A. A.
    Ivanovets, E. A.
    INORGANIC MATERIALS, 2018, 54 (14) : 1435 - 1442
  • [47] Application of Statistical Methods for Classification of Varietal and Regional Origin of White Wines
    V. O. Titarenko
    A. A. Khalafyan
    Z. A. Temerdashev
    A. A. Kaunova
    E. A. Ivanovets
    Inorganic Materials, 2018, 54 : 1435 - 1442
  • [48] Automatic Spectral Classification of Galaxies in the Infrared
    Navarro, Silvana G.
    Guzman, Violeta
    Dafonte, Carlos
    Kemp, Simon N.
    Corral, Luis J.
    MULTI-OBJECT SPECTROSCOPY IN THE NEXT DECADE: BIG QUESTIONS, LARGE SURVEYS, AND WIDE FIELDS, 2016, 507 : 277 - 280
  • [49] BAYESIAN METHODS IN AUTOMATIC CLASSIFICATION
    INGSTER, YI
    AUTOMATION AND REMOTE CONTROL, 1977, 38 (08) : 1170 - 1182
  • [50] AUTOMATIC INDEXING METHODS AND THEIR CLASSIFICATION
    KARASEV, SA
    NAUCHNO-TEKHNICHESKAYA INFORMATSIYA SERIYA 2-INFORMATSIONNYE PROTSESSY I SISTEMY, 1970, (04): : 19 - &