Fast Hankel Transforms Algorithm Based on Kernel Function Interpolation with Exponential Functions

被引:2
|
作者
Zhang, Huaiqing [1 ]
Chen, Yu [1 ]
Nie, Xin [1 ]
机构
[1] State Key Lab Transmiss Equipment & Syst Safety &, Chongqing 400044, Peoples R China
基金
美国国家科学基金会;
关键词
NUMERICAL EVALUATION; COMPUTATION; WAVELETS; ORDER;
D O I
10.1155/2014/105469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Pravin method for Hankel transforms is based on the decomposition of kernel function with exponential function. The defect of such method is the difficulty in its parameters determination and lack of adaptability to kernel function especially using monotonically decreasing functions to approximate the convex ones. This thesis proposed an improved scheme by adding new base function in interpolation procedure. The improved method maintains the merit of Pravin method which can convert the Hankel integral to algebraic calculation. The simulation results reveal that the improved method has high precision, high efficiency, and good adaptability to kernel function. It can be applied to zero-order and first-order Hankel transforms.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] INTERPOLATION OF EXPONENTIAL-TYPE FUNCTIONS ON A UNIFORM GRID BY SHIFTS OF A BASIS FUNCTION
    Levesley, Jeremy
    Sun, Xinping
    Jarad, Fahd
    Kushpel, Alexander
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2399 - 2416
  • [22] An Investigation of the Third Hankel Determinant Problem for Certain Subfamilies of Univalent Functions Involving the Exponential Function
    Shi, Lei
    Srivastava, Hari Mohan
    Arif, Muhammad
    Hussain, Shehzad
    Khan, Hassan
    [J]. SYMMETRY-BASEL, 2019, 11 (05):
  • [23] Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function
    Zhang, Hai-Yan
    Tang, Huo
    Niu, Xiao-Meng
    [J]. SYMMETRY-BASEL, 2018, 10 (10):
  • [24] On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function
    Breaz, Daniel
    Catas, Adriana
    Cotirla, Luminita-Ioana
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 75 - 88
  • [25] On H3(1) Hankel determinant for starlike and convex functions associated with exponential function
    Erzig, Omar S.
    Juma, Abdul Rahman S.
    Al-Fayadh, Ali
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (04) : 897 - 905
  • [26] SELF-CONCORDANT EXPONENTIAL KERNEL FUNCTION BASED INTERIOR-POINT ALGORITHM FOR SEMIDEFINITE OPTIMIZATION
    Zhang, Jing
    Bai, Yanqin
    Ma, Pengfei
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (01): : 121 - 136
  • [27] Fast Mean Shift Algorithm Based on Discretisation and Interpolation
    Sojka, Eduard
    Gaura, Jan
    Fabian, Tomas
    Krumnikl, Michal
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PT I, 2010, 6474 : 402 - 413
  • [28] Numerical Hilbert Transform Algorithm for Causal Interpolation of Functions Represented by Cubic and Exponential Splines
    Grujic, Dusan N.
    [J]. IEEE ACCESS, 2021, 9 : 136702 - 136709
  • [29] Study Of Interpolation Algorithm Based On Velocity Function
    Wang Qiang
    Wang Xingfen
    [J]. 2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 761 - 765
  • [30] A robust regression method based on exponential-type kernel functions
    De Carvalho, Francisco de A. T.
    Lima Neto, Eufrasio de A.
    Ferreira, Marcelo R. P.
    [J]. NEUROCOMPUTING, 2017, 234 : 58 - 74