Multiple imputation of missing values in household data with structural zeros

被引:0
|
作者
Akande, Olanrewaju [1 ]
Reiter, Jerome [2 ]
Barrientos, Andres F. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Duke Univ, Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Categorical; Census; Edit; Latent; Mixture; Nonresponse; MIXTURE-MODELS; LATENT CLASS;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We present an approach for imputation of missing items in multivariate categorical data nested within households. The approach relies on a latent class model that (i) allows for household-level and individual-level variables, (ii) ensures that impossible household configurations have zero probability in the model, and (iii) can preserve multivariate distributions both within households and across households. We present a Gibbs sampler for estimating the model and generating imputations. We also describe strategies for improving the computational efficiency of the model estimation. We illustrate the performance of the approach with data that mimic the variables collected in typical population censuses.
引用
收藏
页码:271 / 294
页数:24
相关论文
共 50 条
  • [31] A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
    Faquih, Tariq
    van Smeden, Maarten
    Luo, Jiao
    le Cessie, Saskia
    Kastenmueller, Gabi
    Krumsiek, Jan
    Noordam, Raymond
    van Heemst, Diana
    Rosendaal, Frits R.
    van Hylckama Vlieg, Astrid
    Willems van Dijk, Ko
    Mook-Kanamori, Dennis O.
    [J]. METABOLITES, 2020, 10 (12) : 1 - 23
  • [32] A First Approach on Big Data Missing Values Imputation
    Montesdeoca, Besay
    Luengo, Julian
    Maillo, Jesus
    Garcia-Gil, Diego
    Garcia, Salvador
    Herrera, Francisco
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS 2019), 2019, : 315 - 323
  • [33] Proper Imputation Techniques for Missing Values in Data sets
    Aljuaid, Tahani
    Sasi, Sreela
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON DATA SCIENCE & ENGINEERING (ICDSE), 2016, : 146 - 150
  • [34] Multiple imputation of missing data for survey data analysis
    Lupo, Coralie
    Le Bouquin, Sophie
    Michel, Virginie
    Colin, Pierre
    Chauvin, Claire
    [J]. EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53): : 73 - 83
  • [35] Multiple imputation for missing data: a brief introduction
    Baccini, Michela
    [J]. EPIDEMIOLOGIA & PREVENZIONE, 2008, 32 (03): : 162 - 163
  • [36] Introduction to multiple imputation for dealing with missing data
    Lee, Katherine J.
    Simpson, Julie A.
    [J]. RESPIROLOGY, 2014, 19 (02) : 162 - 167
  • [37] The use of multiple imputation for the analysis of missing data
    Sinharay, S
    Stern, HS
    Russell, D
    [J]. PSYCHOLOGICAL METHODS, 2001, 6 (04) : 317 - 329
  • [38] Multiple imputation for missing data - A cautionary tale
    Allison, PD
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2000, 28 (03) : 301 - 309
  • [39] Multiple imputation of ordinal missing not at random data
    Hammon, Angelina
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 671 - 692
  • [40] Regression multiple imputation for missing data analysis
    Yu, Lili
    Liu, Liang
    Peace, Karl E.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2647 - 2664