Generalized information potential criterion for adaptive system training

被引:154
|
作者
Erdogmus, D [1 ]
Principe, JC [1 ]
机构
[1] Univ Florida, Computat Neuroengn Lab, Gainesville, FL 32611 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2002年 / 13卷 / 05期
基金
美国国家科学基金会;
关键词
minimum error entropy; Parzen windowing; Renyi's entropy; supervised training;
D O I
10.1109/TNN.2002.1031936
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have recently proposed the quadratic Renyi's error entropy as an alternative cost function for supervised adaptive system training. An,entropy criterion instructs the minimization of the average information. content of the error signal rather than merely trying to minimize its energy. In this paper, we propose a generalization of the error entropy criterion that enables the use of any order of Renyi's entropy and any suitable kernel function in density estimation. It is shown that the proposed entropy estimator preserves the global minimum of actual,entropy. The equivalence between global optimization by convolution smoothing and the convolution by the kernel in Parzen windowing is also discussed. Simulation results are presented for time-series prediction and classification where experimental demonstration of all the theoretical concepts is presented.
引用
收藏
页码:1035 / 1044
页数:10
相关论文
共 50 条
  • [21] Building tracking portfolios based on a generalized information criterion
    Zhang, SJ
    Niu, XF
    Ang, JS
    [J]. STATISTICA SINICA, 2003, 13 (04) : 1075 - 1096
  • [22] Regularization Parameter Selections via Generalized Information Criterion
    Zhang, Yiyun
    Li, Runze
    Tsai, Chin-Ling
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 312 - 323
  • [23] Evaluating modified generalized information criterion in presence of multicollinearity
    Al-Marshadi, Ali Hussein
    Alharby, Abdullah Hamoud
    Aslam, Muhammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6298 - 6307
  • [24] An information theoretic approach to adaptive system training using unlabeled data
    Jeong, KH
    Xu, JW
    Principe, JC
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 191 - 195
  • [25] Kernel Adaptive Filtering under Generalized Maximum Correntropy Criterion
    He, Yicong
    Wang, Fei
    Yang, Jing
    Rong, Haijun
    Chen, Badong
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1738 - 1745
  • [26] An Information Theoretic Criterion for Adaptive Multiobjective Memetic Optimization
    Dang, Hieu V.
    Kinsner, Witold
    [J]. 2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 15 - 28
  • [27] Information criterion based fast PCA adaptive algorithm
    Li Jiawen
    Li Congxin
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2007, 18 (02) : 377 - 384
  • [28] Adaptive filtering under maximum mutual information criterion
    Chen, Badong
    Hu, Jinchun
    Li, Hongbo
    Sun, Zengqi
    [J]. NEUROCOMPUTING, 2008, 71 (16-18) : 3680 - 3684
  • [29] Information criterion based fast PCA adaptive algorithm
    Li Jiawen & Li Congxin National CAD Engineering Research Cnter
    [J]. Journal of Systems Engineering and Electronics, 2007, (02) : 377 - 384
  • [30] Adaptive Filtering under Minimum Information Divergence Criterion
    Chen, Badong
    Zhu, Yu
    Hu, Jinchun
    Sun, Zengqi
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2009, 7 (02) : 157 - 164