Generalized information potential criterion for adaptive system training

被引:154
|
作者
Erdogmus, D [1 ]
Principe, JC [1 ]
机构
[1] Univ Florida, Computat Neuroengn Lab, Gainesville, FL 32611 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2002年 / 13卷 / 05期
基金
美国国家科学基金会;
关键词
minimum error entropy; Parzen windowing; Renyi's entropy; supervised training;
D O I
10.1109/TNN.2002.1031936
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have recently proposed the quadratic Renyi's error entropy as an alternative cost function for supervised adaptive system training. An,entropy criterion instructs the minimization of the average information. content of the error signal rather than merely trying to minimize its energy. In this paper, we propose a generalization of the error entropy criterion that enables the use of any order of Renyi's entropy and any suitable kernel function in density estimation. It is shown that the proposed entropy estimator preserves the global minimum of actual,entropy. The equivalence between global optimization by convolution smoothing and the convolution by the kernel in Parzen windowing is also discussed. Simulation results are presented for time-series prediction and classification where experimental demonstration of all the theoretical concepts is presented.
引用
收藏
页码:1035 / 1044
页数:10
相关论文
共 50 条
  • [1] Survival Information Potential: A New Criterion for Adaptive System Training
    Chen, Badong
    Zhu, Pingping
    Principe, Jose C.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1184 - 1194
  • [2] Convergence analysis of the information potential criterion in adaline training
    Erdogmus, D
    Principe, JC
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XI, 2001, : 123 - 132
  • [3] Generalized information criterion
    Taniguchi, Masanobu
    Hirukawa, Junichi
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (02) : 287 - 297
  • [4] Multimodel adaptive subtraction with regularized parameter selection via generalized information criterion
    Liu, Kuang-Hung
    Kostov, Clement
    [J]. GEOPHYSICS, 2015, 80 (03) : V33 - V45
  • [5] Principal component selection via adaptive regularization method and generalized information criterion
    Park, Heewon
    Konishi, Sadanori
    [J]. STATISTICAL PAPERS, 2017, 58 (01) : 147 - 160
  • [6] Principal component selection via adaptive regularization method and generalized information criterion
    Heewon Park
    Sadanori Konishi
    [J]. Statistical Papers, 2017, 58 : 147 - 160
  • [7] INFORMATION CRITERION OF TRAINING OF ENGINEERS
    VOVKANYCH, SI
    [J]. NAUCHNO-TEKHNICHESKAYA INFORMATSIYA SERIYA 1-ORGANIZATSIYA I METODIKA INFORMATSIONNOI RABOTY, 1989, (06): : 2 - 7
  • [8] A Generalized Information Criterion for Generalized Minor Component Extraction
    Gao Yingbin
    Kong Xiangyu
    Hu Changhua
    Li Hongzeng
    Hou Li'an
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 947 - 959
  • [9] Generalized information criterion for the AR model
    Na, Okyoung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (01) : 146 - 160
  • [10] Generalized information criterion for the AR model
    Okyoung Na
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 146 - 160