Machine-learned Image Analysis Models for Classifying Liver Fibrosis Stage from Magnetic Resonance Images

被引:0
|
作者
Pierre, Timothy G. St. [1 ]
House, Michael J. [1 ]
Mian, Ajmal [2 ]
Bangma, Sander [3 ]
Burgess, Gary [6 ]
Standish, Richard A. [4 ]
Casey, Stephen [5 ]
Hornsey, Emma [7 ]
Angus, Peter W. [5 ]
机构
[1] Univ Western Australia, Sch Phys M013, Crawley, WA, Australia
[2] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, WA, Australia
[3] Resonance Hlth Ltd, Claremont, WA, Australia
[4] Deakin Univ, Sch Med, Waurn Ponds, Vic, Australia
[5] Austin Hosp, Liver Transplant Unit, Heidelberg, Vic 3084, Australia
[6] Pfizer Inc, New York, NY USA
[7] Austin Hosp, Dept Radiol, Heidelberg, Vic 3084, Australia
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
798
引用
收藏
页码:607A / 607A
页数:1
相关论文
共 50 条
  • [41] Scores of Intestinal Fibrosis from Wavelet-Based Magnetic Resonance Imaging Models
    Morilla, Ian
    Doblas, Sabrina
    Garteiser, Philippe
    Zappa, Magaly
    Ogier-Denis, Eric
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT I, 2017, 10208 : 569 - 578
  • [42] Analysis of myocardial motion using generalized spline models and tagged magnetic resonance images
    Chen, F
    Rose, SE
    Wilson, SJ
    Veidt, M
    Bennett, CJ
    Doddrell, DM
    [J]. MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 : 1209 - 1217
  • [43] Automatic Liver Segmentation from CT Images by Combining Statistical Models with Machine Learning
    Luo, Su-huai
    Li, Jia-ming
    [J]. INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2014), 2015, : 190 - 193
  • [44] Method for cortical bone structural analysis from magnetic resonance images
    Gomberg, BR
    Saha, PK
    Wehrli, FW
    [J]. ACADEMIC RADIOLOGY, 2005, 12 (10) : 1320 - 1332
  • [45] DISPLACEMENT ANALYSIS OF THE TEMPOROMANDIBULAR CONDYLE FROM MAGNETIC-RESONANCE IMAGES
    CHEN, J
    BUCKWALTER, K
    [J]. JOURNAL OF BIOMECHANICS, 1993, 26 (12) : 1455 - +
  • [46] Liver Ultrasound Image Classification of Periductal Fibrosis Based on Transfer Learning and FCNet for Liver Ultrasound Images Analysis System
    Nonsakhoo, Woottichai
    Saiyod, Saiyan
    Sirisawat, Piyanat
    Suwanwerakamtorn, Rasamee
    Chamadol, Nittaya
    Khuntikeo, Narong
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 569 - 575
  • [47] Optical analysis of computed tomography images of the liver predicts fibrosis stage and distribution in chronic hepatitis C
    Romero-Gomez, Manuel
    Gomez-Gonzalez, Emilio
    Madrazo, Ana
    Vera-Valencia, Marina
    Rodrigo, Luis
    Perez-Alvarez, Ramon
    Perez-Lopez, Rosa
    Castellano-Megias, Victor M.
    Nevado-Santos, Manuel
    Alcon, Juan C.
    Sola, Ricard
    Perez-Moreno, Jose M.
    Navarro, Jose M.
    Andrade, Raul J.
    Salmeron, Javier
    Fernandez-Lopez, Manuel
    Aznar, Rafael
    Diago, Moises
    [J]. HEPATOLOGY, 2008, 47 (03) : 810 - 816
  • [48] Liver Extraction Method from Magnetic Resonance Cholangio-Pancreatography (MRCP) Images
    Khattak, Saj Id Ur Rehman
    Ali, Mushtaq
    Gul, Faqir
    Khan, Nadir Hussian
    Baloch, Amanullah
    Ahmed, M. Shoaib
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (10) : 450 - 455
  • [49] Automated classification of atherosclerotic plaque from magnetic resonance images using predictive models
    Anderson, Russell W.
    Stomberg, Christopher
    Hahm, Charles W.
    Mani, Venkatesh
    Samber, Daniel D.
    Itskovich, Vitalii V.
    Valera-Guallar, Laura
    Fallon, John T.
    Nedanov, Pavel B.
    Huizenga, Joel
    Fayad, Zahi A.
    [J]. BIOSYSTEMS, 2007, 90 (02) : 456 - 466
  • [50] Quantitative texture analysis of liver fibrosis on double-contrast enhanced magnetic resonance imaging
    Bahl, G
    Aguirre, DA
    Motta, G
    Fonteinos, A
    Rescinito, G
    Sirlin, CB
    [J]. HEPATOLOGY, 2005, 42 (04) : 340A - 340A