Strong converse for the classical capacity of the pure-loss bosonic channel

被引:13
|
作者
Wilde, M. M. [1 ]
Winter, A. [2 ,3 ,4 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[2] Univ Autonoma Barcelona, ICREA, E-08193 Barcelona, Spain
[3] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[4] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
基金
欧洲研究理事会;
关键词
QUANTUM CHANNEL; ENTANGLEMENT COST; INFORMATION;
D O I
10.1134/S003294601402001X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper strengthens the interpretation and understanding of the classical capacity of the pure-loss bosonic channel, first established in [1]. In particular, we first prove that there exists a trade-off between communication rate and error probability if one imposes only a mean photon number constraint on the channel inputs. That is, if we demand that the mean number of photons at the channel input cannot be any larger than some positive number NS, then it is possible to respect this constraint with a code that operates at a rate g(eta NS/(1-p)) where p is the code error probability, eta is the channel transmissivity, and g(x) is the entropy of a bosonic thermal state with mean photon number x. Then we prove that a strong converse theorem holds for the classical capacity of this channel (that such a rate-error trade-off cannot occur) if one instead demands for a maximum photon number constraint, in such a way that mostly all of the "shadow" of the average density operator for a given code is required to be on a subspace with photon number no larger than nNS, so that the shadow outside this subspace vanishes as the number n of channel uses becomes large. Finally, we prove that a small modification of the well-known coherent-state coding scheme meets this more demanding constraint.
引用
收藏
页码:117 / 132
页数:16
相关论文
共 50 条
  • [21] Divergence Radii and the Strong Converse Exponent of Classical-Quantum Channel Coding With Constant Compositions
    Mosonyi, Milan
    Ogawa, Tomohiro
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1668 - 1698
  • [22] ε-Capacity and Strong Converse for Channels with General State
    Tomamichel, Marco
    Tan, Vincent Y. F.
    2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [23] Strong converse for entanglement-assisted capacity
    Gupta, Manish K.
    Wilde, Mark M.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 716 - 720
  • [24] Strong Converse for the Capacity of Quantum Gaussian Channels
    Bardhan, Bhaskar Roy
    Garcia-Patron, Raul
    Wilde, Mark M.
    Winter, Andreas
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 726 - 730
  • [25] Strong converse to the quantum channel coding theorem
    Ogawa, T
    Nagaoka, H
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2486 - 2489
  • [26] Quantum capacity of a bosonic dephasing channel
    Arqand, Amir
    Memarzadeh, Laleh
    Mancini, Stefano
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [27] Towards a strong converse for the quantum capacity (of degradable channels)
    Morgan, Ciara
    Winter, Andreas
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 171 - +
  • [28] "Pretty Strong" Converse for the Quantum Capacity of Degradable Channels
    Morgan, Ciara
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 317 - 333
  • [30] STRONG CONVERSE FOR GEL'FAND-PINSKER CHANNEL
    Moulin, Pierre
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1958 - 1962