Strong converse for the classical capacity of the pure-loss bosonic channel

被引:13
|
作者
Wilde, M. M. [1 ]
Winter, A. [2 ,3 ,4 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[2] Univ Autonoma Barcelona, ICREA, E-08193 Barcelona, Spain
[3] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[4] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
基金
欧洲研究理事会;
关键词
QUANTUM CHANNEL; ENTANGLEMENT COST; INFORMATION;
D O I
10.1134/S003294601402001X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper strengthens the interpretation and understanding of the classical capacity of the pure-loss bosonic channel, first established in [1]. In particular, we first prove that there exists a trade-off between communication rate and error probability if one imposes only a mean photon number constraint on the channel inputs. That is, if we demand that the mean number of photons at the channel input cannot be any larger than some positive number NS, then it is possible to respect this constraint with a code that operates at a rate g(eta NS/(1-p)) where p is the code error probability, eta is the channel transmissivity, and g(x) is the entropy of a bosonic thermal state with mean photon number x. Then we prove that a strong converse theorem holds for the classical capacity of this channel (that such a rate-error trade-off cannot occur) if one instead demands for a maximum photon number constraint, in such a way that mostly all of the "shadow" of the average density operator for a given code is required to be on a subspace with photon number no larger than nNS, so that the shadow outside this subspace vanishes as the number n of channel uses becomes large. Finally, we prove that a small modification of the well-known coherent-state coding scheme meets this more demanding constraint.
引用
收藏
页码:117 / 132
页数:16
相关论文
共 50 条
  • [1] Strong converse for the classical capacity of the pure-loss bosonic channel
    M. M. Wilde
    A. Winter
    Problems of Information Transmission, 2014, 50 : 117 - 132
  • [2] Unconstrained distillation capacities of a pure-loss bosonic broadcast channel
    Takeoka, Masahiro
    Seshadreesan, Kaushik P.
    Wilde, Mark M.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2484 - 2488
  • [3] Polar coding to achieve the Holevo capacity of a pure-loss optical channel
    Guha, Saikat
    Wilde, Mark M.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 546 - 550
  • [4] Second-order coding rates for pure-loss bosonic channels
    Mark M. Wilde
    Joseph M. Renes
    Saikat Guha
    Quantum Information Processing, 2016, 15 : 1289 - 1308
  • [5] Second-order coding rates for pure-loss bosonic channels
    Wilde, Mark M.
    Renes, Joseph M.
    Guha, Saikat
    QUANTUM INFORMATION PROCESSING, 2016, 15 (03) : 1289 - 1308
  • [6] Classical information capacity of the Bosonic broadcast channel
    Guha, Saikat
    Shapiro, Jeffrey H.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1896 - 1900
  • [7] Semidefinite Programming Strong Converse Bounds for Classical Capacity
    Wang, Xin
    Xie, Wei
    Duan, Runyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) : 640 - 653
  • [8] Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels
    Takeoka, Masahiro
    Seshadreesan, Kaushik P.
    Wilde, Mark M.
    PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [9] Strong converse, feedback channel capacity and hypothesis testing
    Chen, PN
    Alajaji, F
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1995, 18 (06) : 777 - 785
  • [10] Strong Converse for the Classical Capacity of Optical Quantum Communication Channels
    Bardhan, Bhaskar Roy
    Garcia-Patron, Raul
    Wilde, Mark M.
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) : 1842 - 1850