Magnetic field deformation due to electron drift in a Hall thruster

被引:1
|
作者
Han Liang [1 ]
Ding Yongjie [1 ]
Zhang Xu [1 ]
Wei Liqiu [1 ]
Yu Daren [1 ]
机构
[1] Harbin Inst Technol, Lab Plasma Prop, Mail Box 458, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL;
D O I
10.1063/1.4973874
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3 degrees in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts. (C) 2017 Author(s).
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Development and Testing of Hall Thruster with Flexible Magnetic Field Configuration
    Mazouffre, S.
    Bourgeois, G.
    Vaudolon, J.
    Garrigues, L.
    Henaux, C.
    Harribey, D.
    Vilamot, R.
    Rossi, A.
    Zurbach, S.
    Le Mehaute, D.
    JOURNAL OF PROPULSION AND POWER, 2015, 31 (04) : 1167 - 1174
  • [12] Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
    Chen, Long
    Kan, Zi-Chen
    Gao, Wei-Fu
    Duan, Ping
    Chen, Jun-Yu
    Tan, Cong-Qi
    Cui, Zuo-Jun
    CHINESE PHYSICS B, 2024, 33 (01)
  • [13] Role of ionization and electron drift velocity profile to Rayleigh instability in a Hall thruster plasma
    Singh, Sukhmander
    Malik, Hitendra K.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
  • [14] Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
    陈龙
    阚子晨
    高维富
    段萍
    陈俊宇
    檀聪琦
    崔作君
    Chinese Physics B, 2024, (01) : 393 - 404
  • [15] Effect of a magnetic field in simulating the plume field of an anode layer Hall thruster
    Choi, Yongjun
    Boyd, Iain D.
    Keidar, Michael
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (01)
  • [16] ELECTRON DRIFT IN EARTHS MAGNETIC FIELD
    GRANNAN, R
    STEPHENS, JR
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (11): : 806 - +
  • [17] Electron flow properties in the far-field plume of a Hall thruster
    Dannenmayer, K.
    Mazouffre, Stephane
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (03):
  • [18] Empirical electron cross-field mobility in a Hall effect thruster
    Garrigues, L.
    Perez-Luna, J.
    Lo, J.
    Hagelaar, G. J. M.
    Boeuf, J. P.
    Mazouffre, S.
    APPLIED PHYSICS LETTERS, 2009, 95 (14)
  • [19] Electron cross-field transport in a miniaturized cylindrical Hall thruster
    Smirnov, AN
    Raitses, Y
    Fisch, NJ
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (02) : 132 - 141
  • [20] Microwave plume measurements of a closed drift hall thruster
    Ohler, S
    Gilchrist, BE
    Gallimore, A
    JOURNAL OF PROPULSION AND POWER, 1998, 14 (06) : 1016 - 1021