The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization

被引:39
|
作者
Gong, Xiuqing [1 ]
Wang, Yun-Wei [1 ]
Ihli, Johannes [1 ]
Kim, Yi-Yeoun [1 ]
Li, Shunbo [1 ]
Walshaw, Richard [2 ,3 ]
Chen, Li [4 ]
Meldrum, Fiona C. [1 ]
机构
[1] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, Leeds Electron Microscopy & Spect Ctr, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Inst Microwaves & Photon, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
AMORPHOUS CALCIUM-CARBONATE; SINGLE-CRYSTALS; MICROLENS ARRAYS; TEMPLATE; IONS; MONOLAYERS; SYSTEMS; GROWTH;
D O I
10.1002/adma.201503931
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. [GRAPHICS] .
引用
收藏
页码:7395 / 7400
页数:6
相关论文
共 50 条
  • [31] Crystallization and crystallographic analysis in a microfluidic chip
    Sauter, Claude
    Dhouib, Kaouthar
    Thuillier, Gael
    Gauthier-Manuel, Bernard
    Khan-Malek, Chantal
    Ferrigno, Rosaria
    Theobald-Dietrich, Anne
    Giege, Richard
    Lorher, Bernard
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C240 - C240
  • [32] Organic and biomimetic designs for microfluidic systems - New strategies offer a flexible approach to designing microscale devices
    Moorthy, J
    Beebe, DJ
    ANALYTICAL CHEMISTRY, 2003, 75 (13) : 292A - 301A
  • [33] Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology
    Priyadarshani, Jyotsana
    Roy, Trina
    Das, Soumen
    Chakraborty, Suman
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (03) : 1263 - 1277
  • [34] A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization
    Chiang, Yu-Chih
    Lin, Hong-Ping
    Chang, Hao-Hueng
    Cheng, Ya-Wen
    Tang, Hsin-Yen
    Yen, Wei-Ching
    Lin, Po-Yen
    Chang, Kei-Wen
    Lin, Chun-Pin
    ACS NANO, 2014, 8 (12) : 12502 - 12513
  • [35] Biomimetic crystallization of apatite in a porous polymer matrix
    Schwarz, K
    Epple, M
    CHEMISTRY-A EUROPEAN JOURNAL, 1998, 4 (10) : 1898 - 1903
  • [36] Crystallization of biomimetic calcite aggregates in hydrogel systems
    Fernandez-Diaz, Lurdes
    Griesshaber, Erika
    Yin, Xiaofei
    Nindiyasari, Fitriana
    Greiner, Martina
    Weitzel, Florian
    Ziegler, Andreas
    Schmah, Wolfgang
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E61 - E61
  • [37] Construction of a biomimetic surface on microfluidic chips for biofouling resistance
    Bi, Hongyan
    Zhong, Wei
    Meng, Sheng
    Kong, Jilie
    Yang, Pengyuan
    Liu, Baohong
    ANALYTICAL CHEMISTRY, 2006, 78 (10) : 3399 - 3405
  • [38] Biomimetic Microfluidic Device for in Vitro Antihypertensive Drug Evaluation
    Li, Lei
    Lv, Xiaoqing
    Ostrovidov, Serge
    Shi, Xuetao
    Zhang, Ning
    Liu, Jing
    MOLECULAR PHARMACEUTICS, 2014, 11 (07) : 2009 - 2015
  • [39] Combinatorial microfluidic droplet engineering for biomimetic material synthesis
    Bawazer, Lukmaan A.
    McNally, Ciara S.
    Empson, Christopher J.
    Marchant, William J.
    Comyn, Tim P.
    Niu, Xize
    Cho, Soongwon
    McPherson, Michael J.
    Binks, Bernard P.
    deMello, Andrew
    Meldrum, Fiona C.
    SCIENCE ADVANCES, 2016, 2 (10):
  • [40] Biomimetic pulsatile flows through flexible microfluidic conduits
    Raj, Kiran M.
    DasGupta, Sunando
    Chakraborty, Suman
    BIOMICROFLUIDICS, 2019, 13 (01):