Wire-arc additive manufacturing of a novel high-performance Al-Zn-Mg-Cu alloy: Processing, characterization and feasibility demonstration

被引:72
|
作者
Klein, Thomas [1 ]
Schnall, Martin [1 ]
Gomes, Bianca [2 ]
Warczok, Piotr [3 ]
Fleischhacker, Dominik [4 ]
Morais, Paulo J. [2 ]
机构
[1] Austrian Inst Technol, LKR Light Met Technol Ranshofen, A-5282 Ranshofen, Austria
[2] Inst Soldadura & Qualidade, P-2740120 Porto Salvo, Portugal
[3] MatCalc Engn GmbH, A-1060 Vienna, Austria
[4] SinusPro GmbH, A-8010 Graz, Austria
关键词
Wire-arc additive manufacturing; High-performance aluminum alloys; Heat treatment; Microstructure evolution; Mechanical properties;
D O I
10.1016/j.addma.2020.101663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire-arc additive manufacturing (WAAM) is a feasible technology for manufacturing of metallic components of medium complexity with a high deposition rate. Manufacturing of aluminum alloys for e.g. structural components of the aero plane fuselage by this technology has been impeded by the unavailability of high-performance alloys with good processability and low susceptibility to hot cracking. Therefore, a novel alloy system has been developed based on the Al-Zn-Mg-Cu system and successfully processed by WAAM without the occurrence of any hot cracks. Heat treatment strategies were developed allowing for optimum mechanical properties. A homogeneous grain structure was observed with few elongated grains. Upon heat treatment, the formation of T phases was verified with a precipitate size in the range of similar to 10 nm. These are responsible for the observed pronounced age-hardening response of this alloy. An isotropic proof stress of up to similar to 340 MPa and a fracture strain of up to similar to 11% are evidence of the high quality of the WAAM deposited material allowing for an extended use of these alloys for advanced applications. Finally, the applicability and processability of the alloy was proven by fabrication of a motorcycle piston.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Inhomogeneity and anisotropy of Al-Zn-Mg-Cu alloy manufactured by wire arc additive manufacturing: microstructure, mechanical properties, stress corrosion cracking susceptibility
    Wang, Shuwen
    Chen, Shujun
    Yuan, Tao
    Jiang, Xiaoqing
    Zhao, Pengjing
    Shan, He
    Zhang, Hanxu
    Ding, Wutong
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [22] Wire-arc additive manufacturing of Mg-Gd-Y-Zn-Zr alloy: Microstructure and mechanical properties
    Zhang, Ce
    Ju, Ruifeng
    Li, Yunlong
    Zhao, Zhanyong
    Wang, Liqing
    Ma, Kai
    Zhang, Dongdong
    Zhang, Zhen
    Bai, Peikang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3083 - 3092
  • [23] Microstructure and properties of dual-wire arc additive manufacturing of Al-Mg-Zn-Cu-Sc alloy
    Lin S.
    Xia Y.
    Dong B.
    Cai X.
    Fan C.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (11): : 36 - 42
  • [24] Microstructure and properties of a novel high-performance Al-Si-Mg alloy fabricated by wire-arc directed energy deposition
    Fang, Xuewei
    Li, Kai
    Ma, Minghua
    Shang, Jiahao
    Feng, Xuelei
    Hou, Yunhui
    Zhu, Ye
    Huang, Ke
    MATERIALS LETTERS, 2024, 360
  • [25] Wire-arc additive manufacturing of Al-Zn5.5-Mg-Cu (ML7075): Shifting paradigms of additive manufacture-ability
    Klein, Thomas
    Reiter, Leonhard
    Schnall, Martin
    MATERIALS LETTERS, 2022, 313
  • [26] Microstructure and mechanical properties of a structurally refined Al-Mg-Si alloy for wire-arc additive manufacturing
    Klein, Thomas
    Arnoldt, Aurel
    Lahnsteiner, Robert
    Schnall, Martin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
  • [27] Step solution treatment of a wire-arc directed energy deposited Al-Zn-Mg-Cu alloy: defects suppression and mechanical property improvement
    Dong, Bolun
    Cai, Xiaoyu
    Xia, Yunhao
    Chen, Fukang
    Lin, Sanbao
    Shan, Debin
    Zong, Yingying
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [28] Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process
    Dong, Bosheng
    Pan, Zengxi
    Shen, Chen
    Ma, Yan
    Li, Huijun
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2017, 48 (06): : 3143 - 3151
  • [29] Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys
    Li K.
    Ji C.
    Bai S.
    Jiang B.
    Pan F.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (07): : 289 - 311
  • [30] Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process
    Bosheng Dong
    Zengxi Pan
    Chen Shen
    Yan Ma
    Huijun Li
    Metallurgical and Materials Transactions B, 2017, 48 : 3143 - 3151