Wire-arc additive manufacturing of a novel high-performance Al-Zn-Mg-Cu alloy: Processing, characterization and feasibility demonstration

被引:72
|
作者
Klein, Thomas [1 ]
Schnall, Martin [1 ]
Gomes, Bianca [2 ]
Warczok, Piotr [3 ]
Fleischhacker, Dominik [4 ]
Morais, Paulo J. [2 ]
机构
[1] Austrian Inst Technol, LKR Light Met Technol Ranshofen, A-5282 Ranshofen, Austria
[2] Inst Soldadura & Qualidade, P-2740120 Porto Salvo, Portugal
[3] MatCalc Engn GmbH, A-1060 Vienna, Austria
[4] SinusPro GmbH, A-8010 Graz, Austria
关键词
Wire-arc additive manufacturing; High-performance aluminum alloys; Heat treatment; Microstructure evolution; Mechanical properties;
D O I
10.1016/j.addma.2020.101663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire-arc additive manufacturing (WAAM) is a feasible technology for manufacturing of metallic components of medium complexity with a high deposition rate. Manufacturing of aluminum alloys for e.g. structural components of the aero plane fuselage by this technology has been impeded by the unavailability of high-performance alloys with good processability and low susceptibility to hot cracking. Therefore, a novel alloy system has been developed based on the Al-Zn-Mg-Cu system and successfully processed by WAAM without the occurrence of any hot cracks. Heat treatment strategies were developed allowing for optimum mechanical properties. A homogeneous grain structure was observed with few elongated grains. Upon heat treatment, the formation of T phases was verified with a precipitate size in the range of similar to 10 nm. These are responsible for the observed pronounced age-hardening response of this alloy. An isotropic proof stress of up to similar to 340 MPa and a fracture strain of up to similar to 11% are evidence of the high quality of the WAAM deposited material allowing for an extended use of these alloys for advanced applications. Finally, the applicability and processability of the alloy was proven by fabrication of a motorcycle piston.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Characterisation of a High-Performance Al-Zn-Mg-Cu Alloy Designed for Wire Arc Additive Manufacturing
    Morais, Paulo J.
    Gomes, Bianca
    Santos, Pedro
    Gomes, Manuel
    Gradinger, Rudolf
    Schnall, Martin
    Bozorgi, Salar
    Klein, Thomas
    Fleischhacker, Dominik
    Warczok, Piotr
    Falahati, Ahmad
    Kozeschnik, Ernst
    MATERIALS, 2020, 13 (07)
  • [2] Effect of thermal cycles on the microstructure and properties of the Al-Zn-Mg-Cu alloy during wire-arc additive manufacturing
    Xu, Min
    Chen, Shujun
    Yuan, Tao
    Jiang, Xiaoqing
    Zhang, Hongda
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 928
  • [3] Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: Microstructures and mechanical properties
    Dong, Bolun
    Cai, Xiaoyu
    Lin, Sanbao
    Li, Xiaolong
    Fan, Chenglei
    Yang, Chunli
    Sun, Haoran
    ADDITIVE MANUFACTURING, 2020, 36
  • [4] Thermal-microstructural analysis of the mechanism of liquation cracks in wire-arc additive manufacturing of Al-Zn-Mg-Cu alloy
    Chen, Shujun
    Xu, Min
    Yuan, Tao
    Jiang, Xiaoqing
    Zhang, Hongda
    Zheng, Xing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 16 : 1260 - 1271
  • [5] Al-Zn-Mg-Cu alloy with both high strength and high plasticity fabricated with wire arc additive manufacturing
    Yuan, Tao
    Ren, Xuelei
    Chen, Shujun
    Jiang, Xiaoqing
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2023, 28 (01) : 81 - 88
  • [6] Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire plus arc additive manufacturing
    Yu, Zhanliang
    Yuan, Tao
    Xu, Min
    Zhang, Hongda
    Jiang, Xiaoqing
    Chen, Shujun
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 62 : 430 - 439
  • [7] Microstructure evolution and mechanical properties of wire-arc additive manufactured Al-Zn-Mg-Cu alloy assisted by interlayer friction stir processing
    Qie, Mofan
    Wei, Jingxun
    He, Changshu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 2891 - 2906
  • [8] Microstructure and properties research of Al-Zn-Mg-Cu alloy with high strength and high elongation fabricated by wire arc additive manufacturing
    Ren, Xuelei
    Jiang, Xiaoqing
    Yuan, Tao
    Zhao, Xiaohu
    Chen, Shujun
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 307
  • [9] Microstructure and Mechanical Properties of a High-Ductility Al-Zn-Mg-Cu Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing
    Zhongwen Hu
    Peng Xu
    Chi Pang
    Qibin Liu
    Shaobo Li
    Jiangshan Li
    Journal of Materials Engineering and Performance, 2022, 31 : 6459 - 6472
  • [10] Microstructure and Mechanical Properties of a High-Ductility Al-Zn-Mg-Cu Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing
    Hu, Zhongwen
    Xu, Peng
    Pang, Chi
    Liu, Qibin
    Li, Shaobo
    Li, Jiangshan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (08) : 6459 - 6472