Multivariate wavelet thresholding in anisotropic function spaces

被引:0
|
作者
Neumann, MH [1 ]
机构
[1] Humboldt Univ, Sonderforsch Bereich 373, D-10178 Berlin, Germany
关键词
anisotropic smoothness classes; anisotropic wavelet basis; multivariate wavelet estimators; nonlinear thresholding; nonparametric curve estimation; optimal rate of convergence; smoothness classes with dominating mixed; derivatives;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that multivariate curve estimation under standard (isotropic) smoothness conditions suffers from the "curse of dimensionality". This is reflected by rates of convergence that deteriorate seriously in standard asymptotic settings. Better rates of convergence than those corresponding to isotropic smoothness priors are possible if the curve to be estimated has different smoothness properties in different directions and the estimation scheme is capable of making use of a lower complexity in some of the directions. We consider typical cases of anisotropic smoothness classes and explore how appropriate wavelet estimators can exploit such restrictions on the curve that require an adaptation to different smoothness properties in different directions. It turns out that nonlinear thresholding with an anisotropic multivariate wavelet basis leads to optimal rates of convergence under smoothness priors of anisotropic type. We derive asymptotic results in the model "signal plus Gaussian white noise", where a decreasing noise level mimics the standard asymptotics with increasing sample size.
引用
收藏
页码:399 / 431
页数:33
相关论文
共 50 条
  • [21] ANISOTROPIC SOBOLEV SPACES AND A QUASIDISTANCE FUNCTION
    EVANS, WD
    RAKOSNIK, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1991, 23 : 59 - 66
  • [22] 'Analytic' wavelet thresholding
    Olhede, SC
    Walden, AT
    BIOMETRIKA, 2004, 91 (04) : 955 - 973
  • [23] Growth envelopes of anisotropic function spaces
    Moura, Susana D.
    Neves, Julio S.
    Piotrowski, Mariusz
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2008, 27 (01): : 95 - 118
  • [24] Traces and embeddings of anisotropic function spaces
    Meyries, Martin
    Veraar, Mark C.
    MATHEMATISCHE ANNALEN, 2014, 360 (3-4) : 571 - 606
  • [25] Multilevel characterizations of anisotropic function spaces
    Kyriazis, G
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) : 441 - 462
  • [26] On multivariate estimation by thresholding
    Fletcher, AK
    Goval, VK
    Ramchandran, K
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 61 - 64
  • [27] ANISOTROPIC SPACES .1. (INTERPOLATION OF ABSTRACT SPACES AND FUNCTION SPACES)
    SCHMEISSER, HJ
    TRIEBEL, H
    MATHEMATISCHE NACHRICHTEN, 1976, 73 : 107 - 123
  • [28] Wavelet characterizations for anisotropic Besov spaces with 0 p 1
    Garrigós, G
    Hochmuth, R
    Tabacco, A
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 573 - 595
  • [29] A crossvalidatory AIC for hard wavelet thresholding in spatially adaptive function estimation
    Hurvich, CM
    Tsai, CL
    BIOMETRIKA, 1998, 85 (03) : 701 - 710
  • [30] Despeckling of ultrasound images using novel adaptive wavelet thresholding function
    Simarjot Kaur Randhawa
    Ramesh Kumar Sunkaria
    Emjee Puthooran
    Multidimensional Systems and Signal Processing, 2019, 30 : 1545 - 1561