SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation

被引:65
|
作者
Hazra, Debapriya [1 ]
Byun, Yung-Cheol [1 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, 102 Jejudaehak Ro, Jeju 63243, South Korea
来源
BIOLOGY-BASEL | 2020年 / 9卷 / 12期
关键词
biomedical signals; generative adversarial networks; synthetic data; health care; EEG; ECG; EMG; PPG;
D O I
10.3390/biology9120441
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple Summary This paper proposes a novel generative adversarial networks model, SynSigGAN, to generate any kind of synthetic biomedical signals. The generation of synthetic signals eliminates confidentiality concerns and accessibility problem of medical data. Synthetic data can be utilized for training medical students and machine learning models for the advancement and automation of healthcare systems. Our proposed model performs significantly better than existing models with a high correlation coefficient that measures the generated synthetic signals' similarity with the original signals. Automating medical diagnosis and training medical students with real-life situations requires the accumulation of large dataset variants covering all aspects of a patient's condition. For preventing the misuse of patient's private information, datasets are not always publicly available. There is a need to generate synthetic data that can be trained for the advancement of public healthcare without intruding on patient's confidentiality. Currently, rules for generating synthetic data are predefined and they require expert intervention, which limits the types and amount of synthetic data. In this paper, we propose a novel generative adversarial networks (GAN) model, named SynSigGAN, for automating the generation of any kind of synthetic biomedical signals. We have used bidirectional grid long short-term memory for the generator network and convolutional neural network for the discriminator network of the GAN model. Our model can be applied in order to create new biomedical synthetic signals while using a small size of the original signal dataset. We have experimented with our model for generating synthetic signals for four kinds of biomedical signals (electrocardiogram (ECG), electroencephalogram (EEG), electromyography (EMG), photoplethysmography (PPG)). The performance of our model is superior wheen compared to other traditional models and GAN models, as depicted by the evaluation metric. Synthetic biomedical signals generated by our approach have been tested while using other models that could classify each signal significantly with high accuracy.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Geophysical model generation with generative adversarial networks
    Puzyrev, Vladimir
    Salles, Tristan
    Surma, Greg
    Elders, Chris
    GEOSCIENCE LETTERS, 2022, 9 (01)
  • [32] A review on Generative Adversarial Networks for image generation
    de Souza, Vinicius Luis Trevisan
    Marques, Bruno Augusto Dorta
    Batagelo, Harlen Costa
    Gois, Joao Paulo
    COMPUTERS & GRAPHICS-UK, 2023, 114 : 13 - 25
  • [33] Review of Generative Adversarial Networks in Image Generation
    Chi, Wanle
    Choo, Yun Huoy
    Goh, Ong Sing
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (01) : 3 - 7
  • [34] Icon Generation Based on Generative Adversarial Networks
    Yang, Hongyi
    Xue, Chengqi
    Yang, Xiaoying
    Yang, Han
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [35] Emotional Dialogue Generation with Generative Adversarial Networks
    Li, Yun
    Wu, Bin
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 868 - 873
  • [36] Question Generation via Generative Adversarial Networks
    Liu, Dong
    Hong, Yu
    Yao, Jianmin
    Zhou, Guodong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [37] Tympanic Membrane Generation with Generative Adversarial Networks
    Eseoglu, Mustafa Furkan
    Karsligil, M. Elif
    Kocak, Ismail
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [38] Generative Adversarial Networks in Image Generation and Recognition
    Popuri, Anoushka
    Miller, John
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 1294 - 1297
  • [39] Generative Adversarial Networks for Face Generation: A Survey
    Kammoun, Amina
    Slama, Rim
    Tabia, Hedi
    Ouni, Tarek
    Abid, Mohmed
    ACM COMPUTING SURVEYS, 2023, 55 (05)
  • [40] Geophysical model generation with generative adversarial networks
    Vladimir Puzyrev
    Tristan Salles
    Greg Surma
    Chris Elders
    Geoscience Letters, 9