Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods

被引:124
|
作者
Yousefi, Mansoor I. [1 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
关键词
Optical fiber communication; forward nonlinear Fourier transform; Zakharov-Shabat spectral problem; numerical methods; operator eigenproblem; SCHRODINGER-EQUATION; CHAOS;
D O I
10.1109/TIT.2014.2321151
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, numerical methods are suggested to compute the discrete and the continuous spectrum of a signal with respect to the Zakharov-Shabat system, a Lax operator underlying numerous integrable communication channels including the nonlinear Schrodinger channel, modeling pulse propagation in optical fibers. These methods are subsequently tested and their ability to estimate the spectrum are compared against each other. These methods are used to compute the spectrum of various signals commonly used in the optical fiber communications. It is found that the layer peeling and the spectral methods are suitable schemes to estimate the nonlinear spectra with good accuracy. To illustrate the structure of the spectrum, the locus of the eigenvalues is determined under amplitude and phase modulation in a number of examples. It is observed that in some cases, as signal parameters vary, eigenvalues collide and change their course of motion. The real axis is typically the place from which new eigenvalues originate or, are absorbed into after traveling a trajectory in the complex plane.
引用
收藏
页码:4329 / 4345
页数:17
相关论文
共 50 条
  • [1] Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools
    Yousefi, Mansoor I.
    Kschischang, Frank R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 4312 - 4328
  • [2] Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation
    Yousefi, Mansoor I.
    Kschischang, Frank R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 4346 - 4369
  • [3] Numerical Methods for the Inverse Nonlinear Fourier Transform
    Civelli, Stella
    Barletti, Luigi
    Secondini, Marco
    [J]. 2015 TYRRHENIAN INTERNATIONAL WORKSHOP ON DIGITAL COMMUNICATIONS (TIWDC), 2015, : 13 - 16
  • [4] Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods
    Kamalian, Morteza
    Prilepsky, Jaroslaw E.
    Le, Son Thai
    Turitsyn, Sergei K.
    [J]. OPTICS EXPRESS, 2016, 24 (16): : 18353 - 18369
  • [5] Nonlinear Fourier transform based transmission
    Turitsyn, Sergei K.
    [J]. 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), 2017,
  • [6] Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment
    Goossens, Jan-Willem
    Hafermann, Hartmut
    Jaouen, Yves
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (23) : 6520 - 6528
  • [7] Resolution - Part II: Fourier transform spectrometers
    Ball, DW
    [J]. SPECTROSCOPY, 1998, 13 (01) : 32 - +
  • [8] Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part I: Theory
    Goossens, Jan-Willem
    Hafermann, Hartmut
    Jaouen, Yves
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (23) : 6499 - 6519
  • [9] Discrete two dimensional Fourier transform in polar coordinates part II: numerical computation and approximation of the continuous transform
    Yao, Xueyang
    Baddour, Natalie
    [J]. PEERJ COMPUTER SCIENCE, 2020, 2020 (03) : 1 - 38
  • [10] Probabilistic Eigenvalue Shaping for Nonlinear Fourier Transform Transmission
    Buchberger, Andreas
    Graell i Amat, Alexandre
    Aref, Vahid
    Schmalen, Laurent
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4799 - 4807