Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools

被引:282
|
作者
Yousefi, Mansoor I. [1 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
关键词
Nonlinear Fourier transform; integrable channels; Lax pairs; Zakharov-Shabat spectral problem; Fourier transforms; fiber-optic communications;
D O I
10.1109/TIT.2014.2321143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The nonlinear Fourier transform (NFT), a powerful tool in soliton theory and exactly solvable models, is a method for solving integrable partial differential equations governing wave propagation in certain nonlinear media. The NFT decorrelates signal degrees-of-freedom in such models, in much the same way that the Fourier transform does for linear systems. In this three-part series of papers, this observation is exploited for data transmission over integrable channels, such as optical fibers, where pulse propagation is governed by the nonlinear Schrodinger equation. In this transmission scheme, which can be viewed as a nonlinear analogue of orthogonal frequency-division multiplexing commonly used in linear channels, information is encoded in the nonlinear frequencies and their spectral amplitudes. Unlike most other fiber-optic transmission schemes, this technique deals with both dispersion and nonlinearity directly and unconditionally without the need for dispersion or nonlinearity compensation methods. This paper explains the mathematical tools that underlie the method.
引用
收藏
页码:4312 / 4328
页数:17
相关论文
共 50 条
  • [1] Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation
    Yousefi, Mansoor I.
    Kschischang, Frank R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 4346 - 4369
  • [2] Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods
    Yousefi, Mansoor I.
    Kschischang, Frank R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 4329 - 4345
  • [3] Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part I: Theory
    Goossens, Jan-Willem
    Hafermann, Hartmut
    Jaouen, Yves
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (23) : 6499 - 6519
  • [4] Nonlinear Fourier transform based transmission
    Turitsyn, Sergei K.
    [J]. 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), 2017,
  • [5] Probabilistic Eigenvalue Shaping for Nonlinear Fourier Transform Transmission
    Buchberger, Andreas
    Graell i Amat, Alexandre
    Aref, Vahid
    Schmalen, Laurent
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4799 - 4807
  • [6] The fast fourier transform for experimentalists, Part I: Concepts
    Donnelly, D
    Rust, B
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (02) : 80 - 88
  • [7] Capacity estimates for optical transmission based on the nonlinear Fourier transform
    Derevyanko, Stanislav A.
    Prilepsky, Jaroslaw E.
    Turitsyn, Sergei K.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Capacity estimates for optical transmission based on the nonlinear Fourier transform
    Stanislav A. Derevyanko
    Jaroslaw E. Prilepsky
    Sergei K. Turitsyn
    [J]. Nature Communications, 7
  • [9] Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods
    Kamalian, Morteza
    Prilepsky, Jaroslaw E.
    Le, Son Thai
    Turitsyn, Sergei K.
    [J]. OPTICS EXPRESS, 2016, 24 (16): : 18353 - 18369
  • [10] Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment
    Goossens, Jan-Willem
    Hafermann, Hartmut
    Jaouen, Yves
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (23) : 6520 - 6528