Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net

被引:4
|
作者
Li, Hongwei [1 ]
Zhygallo, Andrii [1 ]
Menze, Bjoern [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
关键词
Brain structure segmentation; Deep learning;
D O I
10.1007/978-3-030-11723-8_39
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Brain image segmentation is used for visualizing and quantifying anatomical structures of the brain. We present an automated approach using 2D deep residual dilated networks which captures rich context information of different tissues for the segmentation of eight brain structures. The proposed system was evaluated in the MICCAI Brain Segmentation Challenge (http://mrbrains18.isi.uu.nl/) and ranked 9th out of 22 teams. We further compared the method with traditional U-Net using leave-one-subject-out cross-validation setting on the public dataset. Experimental results shows that the proposed method outperforms traditional U-Net (i.e. 80.9% vs 78.3% in averaged Dice score, 4.35mm vs 11.59mm in averaged robust Hausdorff distance) and is computationally efficient.
引用
收藏
页码:385 / 393
页数:9
相关论文
共 50 条
  • [21] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Wang, Jinke
    Zhang, Xiangyang
    Lv, Peiqing
    Wang, Haiying
    Cheng, Yuanzhi
    [J]. CANCER MANAGEMENT AND RESEARCH, 2022, 14 : 1479 - 1493
  • [22] MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
    Khalaf, Muna
    Dhannoon, Ban N.
    [J]. BAGHDAD SCIENCE JOURNAL, 2022, 19 (06) : 1603 - 1611
  • [23] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Jinke Wang
    Xiangyang Zhang
    Peiqing Lv
    Haiying Wang
    Yuanzhi Cheng
    [J]. Journal of Digital Imaging, 2022, 35 (6) : 1479 - 1493
  • [24] Automatic segmentation of brain tumor resections in intraoperative ultrasound images using U-Net
    Carton, Francois-Xavier
    Chabanas, Matthieu
    Le Lann, Florian
    Noble, Jack H.
    [J]. JOURNAL OF MEDICAL IMAGING, 2020, 7 (03)
  • [25] EMU-Net: Automatic Brain Tumor Segmentation and Classification Using Efficient Modified U-Net
    Aly, Mohammed
    Alotaibi, Abdullah Shawan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (01): : 557 - 582
  • [26] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [27] Automatic Brain White Matter Hyperintensities Segmentation with Swin U-Net
    Viteri, Jose A.
    Piguave, Bryan V.
    Pelaez, Enrique
    Loayza, Francis R.
    [J]. 2022 IEEE ANDESCON, 2022, : 372 - 377
  • [28] Deep residual U-Net for automatic detection of Moroccan coastal upwelling using SST images
    Snoussi, Mohamed
    Tamim, Ayoub
    El Fellah, Salma
    El Ansari, Mohamed
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (05) : 7491 - 7507
  • [29] Deep residual U-Net for automatic detection of Moroccan coastal upwelling using SST images
    Mohamed Snoussi
    Ayoub Tamim
    Salma El Fellah
    Mohamed El Ansari
    [J]. Multimedia Tools and Applications, 2023, 82 : 7491 - 7507
  • [30] AUTOMATIC SEGMENTATION OF THE FEMUR AND TIBIA BONES FROM X-RAY IMAGES BASED ON PURE DILATED RESIDUAL U-NET
    Shen, Weihao
    Xu, Wenbo
    Zhang, Hongyang
    Sun, Zexin
    Ma, Jianxiong
    Ma, Xinlong
    Zhou, Shoujun
    Guo, Shijie
    Wang, Yuanquan
    [J]. INVERSE PROBLEMS AND IMAGING, 2021, 15 (06) : 1333 - 1346