A neuro-fuzzy method of power disturbances recognition and reduction

被引:0
|
作者
Reznik, L [1 ]
Negnevitsky, M [1 ]
机构
[1] Victoria Univ, Sch Commun & Informat, Melbourne, Vic 8001, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper combines two major neuro-fuzzy applications in power engineering: stabilizing power systems at a generation stage and reducing disturbances at a delivery stage. It presents a neural-fuzzy classifier for recognition of power disturbances and a fuzzy excitation controller comprising both the exciter and the power system stabilizer.
引用
收藏
页码:1517 / 1522
页数:6
相关论文
共 50 条
  • [31] A Hybrid Neuro-Fuzzy and Feature Reduction Model for Classification
    Das, Himansu
    Naik, Bighnaraj
    Behera, H. S.
    [J]. ADVANCES IN FUZZY SYSTEMS, 2020, 2020
  • [32] A neuro-fuzzy model for dimensionality reduction and its application
    Kolodyazhniy, Vitaliy
    Klawonn, Frank
    Tschumitschew, Katharina
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (05) : 571 - 593
  • [33] Design method for neuro-fuzzy motion controllers
    Vlad, OP
    Fukuda, T
    [J]. IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 48 - 53
  • [34] A Neuro-Fuzzy Based Method for TAIEX Forecasting
    Wang, Zhao-Yu
    Lee, Shie-Jue
    [J]. PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2014, : 579 - 584
  • [35] A method for designing flexible neuro-fuzzy systems
    Cpalka, Krzysztof
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 212 - 219
  • [36] Complexity reduction of singleton based neuro-fuzzy algorithm
    Baranyi, P
    Lei, KF
    Yam, Y
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2503 - 2508
  • [37] A New Method for Complexity Reduction of Neuro-fuzzy Systems with Application to Differential Stroke Diagnosis
    Cpalka, Krzysztof
    Rebrova, Olga
    Rutkowski, Leszek
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, 2009, 5769 : 435 - +
  • [38] Power prediction using an optimal neuro-fuzzy predictor
    Gao, XM
    Gao, XZ
    Ovaska, SJ
    [J]. IMTC/97 - IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE: SENSING, PROCESSING, NETWORKING, PROCEEDINGS VOLS 1 AND 2, 1997, : 1225 - 1230
  • [39] Neuro-fuzzy models of thermoelectric power station installations
    Mastacan, Lucian
    Olah, Iosif
    Dosoftei, Catalin Constantin
    Ivana, Dorin
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, 2006, : 899 - +
  • [40] Market Power Prediction via Neuro-fuzzy System
    Alireza Soofiabadi
    Asghar Akbari Foroud
    [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2022, 46 : 441 - 460