Comparative Study of CNN and RNN for Deep Learning Based Intrusion Detection System

被引:12
|
作者
Cui, Jianjing [1 ]
Long, Jun [1 ]
Min, Erxue [1 ]
Liu, Qiang [1 ]
Li, Qian [2 ]
机构
[1] Natl Univ Def Technol, Dept Comp Sci, Changsha 410005, Hunan, Peoples R China
[2] Univ Technol Sydney, Fac Engn & IT, Sydney, NSW 2007, Australia
来源
基金
中国国家自然科学基金;
关键词
Intrusion detection system; Deep neural networks; Convolutional neural network; Recurrent neural network;
D O I
10.1007/978-3-030-00018-9_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Intrusion detection system plays an important role in ensuring information security, and the key technology is to accurately identify various attacks in the network. Due to huge increase in network traffic and different types of attacks, accurately classifying the malicious and legitimate network traffic is time consuming and computational intensive. Recently, more and more researchers applied deep neural networks (DNNs) to solve intrusion detection problems. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), the two main types of DNN architectures, are widely explored to enhance the performance of intrusion detection system. In this paper, we made a systematic comparison of CNN and RNN on the deep learning based intrusion detection systems, aiming to give basic guidance for DNN selection.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 50 条
  • [31] Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
    Ferrag, Mohamed Amine
    Maglaras, Leandros
    Moschoyiannis, Sotiris
    Janicke, Helge
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 50
  • [32] Deep Reinforcement Learning based Intrusion Detection System for Cloud Infrastructure
    Sethi, Kamalakanta
    Kumar, Rahul
    Prajapati, Nishant
    Bera, Padmalochan
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [33] Deep Learning-Based Intrusion Detection System for Internet of Vehicles
    Ahmed, Imran
    Jeon, Gwanggil
    Ahmad, Awais
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 117 - 123
  • [34] A Deep Learning Based Intrusion Detection System for Electric Distribution Grids
    Liu W.-J.
    Guo Z.-M.
    Wu C.-M.
    Ruan W.
    Zhou B.-Y.
    Zhou N.
    Lü Z.
    Ruan, Wei (ruanwei@zju.edu.cn), 1600, Chinese Institute of Electronics (48): : 1538 - 1544
  • [35] Research on Intrusion Detection and Target Recognition System Based on Deep Learning
    Hu, Xianwei
    Li, Tie
    Wu, Zongzhi
    Gao, Xuan
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2019), 2019, 646
  • [36] Deep Learning Techniques for Anomaly based Intrusion Detection System: A Survey
    Kumar, Yogendra
    Chouhan, Lokesh
    Subba, Basant
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 915 - 920
  • [37] Applying Big Data Based Deep Learning System to Intrusion Detection
    Zhong, Wei
    Yu, Ning
    Ai, Chunyu
    BIG DATA MINING AND ANALYTICS, 2020, 3 (03): : 181 - 195
  • [38] Toward an Online Anomaly Intrusion Detection System Based on Deep Learning
    Alrawashdeh, Khaled
    Purdy, Carla
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 195 - 200
  • [39] Deep Learning-Based Hybrid Intelligent Intrusion Detection System
    Khan, Muhammad Ashfaq
    Kim, Yangwoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 671 - 687
  • [40] Applying Big Data Based Deep Learning System to Intrusion Detection
    Wei Zhong
    Ning Yu
    Chunyu Ai
    Big Data Mining and Analytics, 2020, 3 (03) : 181 - 195