Infinite Von Mises-Fisher Mixture Model and Its Application to Gene Expression Data Clustering

被引:0
|
作者
Zhu, Jiaojiao [1 ]
Fan, Wentao [1 ]
机构
[1] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet Process; von-Mises Fisher Mixture Model; Clustering; Variational Inference; Kd Tree; Gene Expression; VARIATIONAL INFERENCE;
D O I
10.1145/3461353.3461364
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In some applications of data mining, clustering analysis of directional data is often involved. In this case, conventional model-based clustering methods are not suitable for fitting the data of such type of structure. Therefore, a Dirichlet Process Mixture Model based on von Mises-Fisher distribution was proposed for the clustering analysis of directional data. The main motivation is that as a non-parametric Bayesian model, The Dirichlet process can automatically determine the complexity of the mixture model when the number of data categories is unknown. We use the accelerated Variational inference algorithm to quickly estimate the parameters involved in the model, which enables the method to be applied in applications with large data scale. The validity of the proposed model was verified by using different scale simulation data and clustering analysis of gene expression data.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [1] A von Mises-Fisher mixture model for clustering numerical and categorical variables
    Bry, Xavier
    Cucala, Lionel
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2022, 16 (02) : 429 - 455
  • [2] Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data
    Roge, Rasmus E.
    Madsen, Kristoffer H.
    Schmidt, Mikkel N.
    Morup, Morten
    [J]. NEURAL COMPUTATION, 2017, 29 (10) : 2712 - 2741
  • [3] Von Mises-Fisher Clustering Models
    Gopal, Siddharth
    Yang, Yiming
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [4] Von Mises-Fisher mixture model of the diffusion ODF
    McGraw, Tim
    Vemuri, Baba C.
    Yezierski, Bob
    Mareci, Thomas
    [J]. 2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 65 - +
  • [5] Document Clustering using Mixture Model of von Mises-Fisher Distributions on Document Manifold
    Nguyen Kim Anh
    Nguyen The Tam
    Ngo Van Linh
    [J]. 2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 140 - 145
  • [6] GENERATIVE MODEL-BASED SPEAKER CLUSTERING VIA MIXTURE OF VON MISES-FISHER DISTRIBUTIONS
    Tang, Hao
    Chu, Stephen M.
    Huang, Thomas S.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 4101 - +
  • [7] Social regularized von Mises-Fisher mixture model for item recommendation
    Salah, Aghiles
    Nadif, Mohamed
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (05) : 1218 - 1241
  • [8] Mixture of von Mises-Fisher distribution with sparse prototypes
    Rossi, Fabrice
    Barbaro, Florian
    [J]. NEUROCOMPUTING, 2022, 501 : 41 - 74
  • [9] Parameter Estimation for von Mises-Fisher Mixture Model via Gaussian Distribution
    Yasutomi, Suguru
    Tanaka, Toshihisa
    [J]. 2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2014,
  • [10] Assessing the Number of Clusters From a Mixture of Von Mises-Fisher
    Bouberima, Wafia Parr
    Nadif, Mohamed
    Bencheikh, Yamina Khemal
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL III, 2010, : 2006 - 2011