Precise small-molecule recognition of a toxic CUG RNA repeat expansion

被引:0
|
作者
Rzuczek, Suzanne G. [1 ,2 ]
Colgan, Lesley A. [3 ]
Nakai, Yoshio [1 ,2 ]
Cameron, Michael D. [4 ]
Furling, Denis [5 ]
Yasuda, Ryohei [3 ]
Disney, Matthew D. [1 ,2 ]
机构
[1] Scripps Res Inst, Dept Chem, Jupiter, FL USA
[2] Scripps Res Inst, Dept Neurosci, Jupiter, FL USA
[3] Max Planck Florida Inst Neurosci, Jupiter, FL USA
[4] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL USA
[5] UPMC Univ Paris 06, Sorbonne Univ, INSERM, CNRS,Ctr Rech Myol,Inst Myol, Paris, France
基金
美国国家卫生研究院;
关键词
MYOTONIC-DYSTROPHY TYPE-1; SEQUENCE-BASED DESIGN; MUSCLEBLIND PROTEINS; IN-SITU; TRANSCRIPTS; LOCALIZATION; ANTIBIOTICS; INHIBITION; REVERSAL; ELEMENT;
D O I
10.1038/NCHEMBIO.2251
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)(exp)) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)(exp). In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)(exp) and reacted to afford picomolar inhibitors via a proximity based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)(exp) in its natural context.
引用
收藏
页码:188 / 193
页数:6
相关论文
共 50 条
  • [31] Riboswitches:: small-molecule recognition by gene regulatory RNAs
    Edwards, Thomas E.
    Klein, Daniel J.
    Ferre-D'Amare, Adrian R.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (03) : 273 - 279
  • [32] Small-Molecule 3D Ligand for RNA Recognition: Tuning Selectivity through Scaffold Hopping
    Felder, Simon
    Sagne, Corinne
    Benedetti, Erica
    Micouin, Laurent
    ACS CHEMICAL BIOLOGY, 2022, 17 (11) : 3069 - 3076
  • [33] Small-molecule screens for targeting non-coding RNA
    Willson, Joseph
    NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (05) : 338 - 338
  • [34] First small-molecule drug targeting RNA gains momentum
    Sheridan, Cormac
    NATURE BIOTECHNOLOGY, 2021, 39 (01) : 6 - 8
  • [35] Small-molecule screening of ribonuclease L binders for RNA degradation
    Borgelt, Lydia
    Haacke, Neele
    Lampe, Philipp
    Qiu, Xiaqiu
    Gasper, Raphael
    Schiller, Damian
    Hwang, Jimin
    Sievers, Sonja
    Wu, Peng
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 154
  • [36] RNA as a small-molecule drug target: doubling the value of genomics
    Ecker, DJ
    Griffey, RH
    DRUG DISCOVERY TODAY, 1999, 4 (09) : 420 - 429
  • [37] Small molecule recognition of duplex RNA.
    Beal, PA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U172 - U172
  • [38] Small-molecule screens for targeting non-coding RNA
    Joseph Willson
    Nature Reviews Drug Discovery, 2022, 21 : 338 - 338
  • [39] A RNA-Based Approach towards Small-Molecule Inhibitors
    Mayer, Guenter
    Faulhammer, Dirk
    Graettinger, Mira
    Fessele, Sabine
    Blind, Michael
    CHEMBIOCHEM, 2009, 10 (12) : 1993 - 1996
  • [40] Atomically resolved simulation studies of RNA/small-molecule interactions
    Levintov, Lev
    Vashisth, Harish
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256