A collocation method for generalized nonlinear Klein-Gordon equation

被引:11
|
作者
Guo, Ben-Yu [1 ,2 ,3 ]
Wang, Zhong-Qing [1 ,2 ,3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
[3] E Inst Shanghai Univ, Div Computat Sci, Shanghai 200234, Peoples R China
关键词
Space-time collocation method; Generalized nonlinear Klein-Gordon equation; SPECTRAL METHOD; LAGUERRE; JACOBI;
D O I
10.1007/s10444-013-9312-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a collocation method for an initial-boundary value problem of the generalized nonlinear Klein-Gordon equation. It possesses the spectral accuracy in both space and time directions. The numerical results indicate the high accuracy and the stability of long-time calculation of suggested algorithm, even for moderate mode in spatial approximation and big time step sizes. The main idea and techniques developed in this work provide an efficient framework for the collocation method of various nonlinear problems.
引用
收藏
页码:377 / 398
页数:22
相关论文
共 50 条
  • [21] A Legendre pseudospectral method for solving nonlinear Klein-Gordon equation
    Li, X
    Guo, BY
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (02) : 105 - 126
  • [22] FD-METHOD FOR SOLVING THE NONLINEAR KLEIN-GORDON EQUATION
    Makarov, V. L.
    Dragunov, D. V.
    Sember, D. A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2013, 64 (10) : 1586 - 1609
  • [23] Exact Solutions for Generalized Klein-Gordon Equation
    Yang, Libo
    Wang, Daoming
    An, Fengxian
    [J]. JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (03): : 351 - 358
  • [24] THE GENERALIZED KLEIN-GORDON EQUATION AND MACH PRINCIPLE
    BOGOSLOVSKY, GY
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1983, 24 (03): : 59 - 61
  • [25] METHOD OF REFLECTIONS FOR THE KLEIN-GORDON EQUATION
    Korzyuk, Academician Viktor I.
    V. Rudzko, Jan
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2022, 66 (03): : 263 - 268
  • [26] A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations
    Yomba, Emmanuel
    [J]. PHYSICS LETTERS A, 2008, 372 (07) : 1048 - 1060
  • [27] A nonlinear Klein-Gordon equation on a star graph
    Goloshchapova, Nataliia
    [J]. MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1742 - 1764
  • [28] SYMMETRY GROUP OF THE NONLINEAR KLEIN-GORDON EQUATION
    RUDRA, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : 2499 - 2504
  • [29] Operational Solution to the Nonlinear Klein-Gordon Equation
    Bengochea, G.
    Verde-Star, L.
    Ortigueira, M.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (05) : 506 - 512
  • [30] Vortex dynamics for nonlinear Klein-Gordon equation
    Yu, Yong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 970 - 994