ICASENSE: Sensitivity mapping using independent component analysis for Parallel Magnetic Resonance Imaging

被引:0
|
作者
Le Bec, Gael [1 ]
Raoof, Kosai [1 ]
Asfour, Aktham [1 ]
Yonnet, Jean-Paul [1 ]
机构
[1] Lab Images & Signals, St Martin Dheres 38402, France
关键词
D O I
10.1109/IEMBS.2005.1615409
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Parallel Magnetic Resonance Imaging (MRI) methods employ receiver coils sensitivities to reduce imaging time: reconstruction algorithms need RF field maps which must be measured or estimated. Assuming statistical independence of different regions in a MR image, we consider the sensitivity estimation as a Blind Source Separation (BSS) problem that can be solved with Independent Component Analysis (ICA). This new formulation permits sensitivity maps extraction from only one MR acquisition, without calibration step or acquisition of additional k-space lines. Simulation results are presented for sensitivity encoded (SENSE) MR images, proving that sensitivity data can be extracted from statistical properties of the image, using the method ICASENSE.
引用
收藏
页码:4275 / 4277
页数:3
相关论文
共 50 条
  • [11] Motion-corrected independent component analysis for robust functional magnetic resonance imaging
    Liao, R
    McKeown, MJ
    Krolik, JL
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 37 - 40
  • [12] Independent Component Analysis Involving Autocorrelated Sources With an Application to Functional Magnetic Resonance Imaging
    Lee, Seonjoo
    Shen, Haipeng
    Truong, Young
    Lewis, Mechelle
    Huang, Xuemei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 1009 - 1024
  • [13] Applying independent component analysis to detect silent speech in magnetic resonance imaging signals
    Abe, Kazuhiro
    Takahashi, Toshimitsu
    Takikawa, Yoriko
    Arai, Hajime
    Kitazawa, Shigeru
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2011, 34 (08) : 1189 - 1199
  • [14] Brain Structural Magnetic Resonance Imaging for Joint Independent Component Analysis in Schizophrenic Patients
    Chu, Wen-Lin
    Huang, Min-Wei
    Jian, Bo-Lin
    Cheng, Kuo-Sheng
    CURRENT MEDICAL IMAGING, 2019, 15 (05) : 471 - 478
  • [15] Independent Component Analysis of Resting-State Functional Magnetic Resonance Imaging in Pedophiles
    Cantor, J. M.
    Lafaille, S. J.
    Hannah, J.
    Kucyi, A.
    Soh, D. W.
    Girard, T. A.
    Mikulis, D. J.
    JOURNAL OF SEXUAL MEDICINE, 2016, 13 (10): : 1546 - 1554
  • [16] Automated Macrovessel Artifact Correction in Dynamic Susceptibility Contrast Magnetic Resonance Imaging Using Independent Component Analysis
    Reishofer, Gernot
    Koschutnig, Karl
    Enzinger, Christian
    Ischebeck, Anja
    Keeling, Stephen
    Stollberger, Rudolf
    Ebner, Franz
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (03) : 848 - 857
  • [17] A Robust Independent Component Analysis (ICA) Model for Functional Magnetic Resonance Imaging (fMRI) Data
    Ao, Jingqi
    Mitra, Sunanda
    Liu, Zheng
    Nutter, Brian
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [18] Test-retest precision of functional magnetic resonance imaging processed with independent component analysis
    G. Nybakken
    M. Quigley
    C. Moritz
    D. Cordes
    V. Haughton
    M. Meyerand
    Neuroradiology, 2002, 44 : 403 - 406
  • [19] APPLICATION OF INDEPENDENT COMPONENT ANALYSIS FOR ACTIVATION DETECTION IN FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) DATA
    Akhbari, Mahsa
    Fatemizadeh, Emad
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 129 - 132
  • [20] Application of independent component analysis to magnetic resonance imaging for enhancing the contrast of gray and white matter
    Nakai, T
    Muraki, S
    Bagarinao, E
    Miki, Y
    Takehara, Y
    Matsuo, K
    Kato, C
    Sakahara, H
    Isoda, H
    NEUROIMAGE, 2004, 21 (01) : 251 - 260