ICASENSE: Sensitivity mapping using independent component analysis for Parallel Magnetic Resonance Imaging

被引:0
|
作者
Le Bec, Gael [1 ]
Raoof, Kosai [1 ]
Asfour, Aktham [1 ]
Yonnet, Jean-Paul [1 ]
机构
[1] Lab Images & Signals, St Martin Dheres 38402, France
关键词
D O I
10.1109/IEMBS.2005.1615409
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Parallel Magnetic Resonance Imaging (MRI) methods employ receiver coils sensitivities to reduce imaging time: reconstruction algorithms need RF field maps which must be measured or estimated. Assuming statistical independence of different regions in a MR image, we consider the sensitivity estimation as a Blind Source Separation (BSS) problem that can be solved with Independent Component Analysis (ICA). This new formulation permits sensitivity maps extraction from only one MR acquisition, without calibration step or acquisition of additional k-space lines. Simulation results are presented for sensitivity encoded (SENSE) MR images, proving that sensitivity data can be extracted from statistical properties of the image, using the method ICASENSE.
引用
收藏
页码:4275 / 4277
页数:3
相关论文
共 50 条
  • [1] Probabilistic independent component analysis for functional magnetic resonance imaging
    Beckmann, CF
    Smith, SA
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 137 - 152
  • [2] Lattice independent component analysis for functional magnetic resonance imaging
    Grana, Manuel
    Chyzhyk, Darya
    Garcia-Sebastian, Maite
    Hernandez, Carmen
    INFORMATION SCIENCES, 2011, 181 (10) : 1910 - 1928
  • [3] Independent component analysis of functional magnetic resonance imaging data using wavelet dictionaries
    Johnson, Robert
    Marchini, Jonathan
    Smith, Stephen
    Beckmann, Christian
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 625 - +
  • [4] Three-way parallel group independent component analysis: Fusion of spatial and spatiotemporal magnetic resonance imaging data
    Qi, Shile
    Silva, Rogers F.
    Zhang, Daoqiang
    Plis, Sergey M.
    Miller, Robyn
    Vergara, Victor M.
    Jiang, Rongtao
    Zhi, Dongmei
    Sui, Jing
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2022, 43 (04) : 1280 - 1294
  • [5] Robust analysis of event-related functional magnetic resonance imaging data using independent component analysis
    Kadah, YM
    MEDICAL IMAGING 2002: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 2002, 4683 : 374 - 385
  • [6] The impact of denoising on independent component analysis of functional magnetic resonance imaging data
    Pignat, Jean Michel
    Koval, Oleksiy
    Van De Ville, Dimitri
    Voloshynovskiy, Sviatoslav
    Michel, Christoph
    Pun, Thierry
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 213 (01) : 105 - 122
  • [7] An optimal independent component analysis approach for functional magnetic resonance Imaging data
    Zhang, Nan
    Yu, Xianchuan
    Ding, Guosheng
    IIH-MSP: 2006 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2006, : 163 - +
  • [8] Independent Component Analysis for Magnetic Resonance Image Analysis
    Yen-Chieh Ouyang
    Hsian-Min Chen
    Jyh-Wen Chai
    Cheng-Chieh Chen
    Clayton Chi-Chang Chen
    Sek-Kwong Poon
    Ching-Wen Yang
    San-Kan Lee
    EURASIP Journal on Advances in Signal Processing, 2008
  • [9] Independent component analysis for magnetic resonance image analysis
    Ouyang, Yen-Chieh
    Chen, Hsian-Min
    Chai, Jyh-Wen
    Chen, Cheng-Chieh
    Chen, Clayton Chi-Chang
    Poon, Sek-Kwong
    Yang, Ching-Wen
    Lee, San-Kan
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [10] Motion-corrected independent component analysis for robust functional magnetic resonance imaging
    Liao, R
    McKeown, MJ
    Krolik, JL
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 37 - 40