Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory

被引:41
|
作者
Friedrich, Michael [1 ]
Riefer, Arthur [1 ]
Sanna, Simone [1 ]
Schmidt, W. G. [1 ]
Schindlmayr, Arno [1 ]
机构
[1] Univ Paderborn, Dept Phys, D-33095 Paderborn, Germany
关键词
lithium niobate; zero-point renormalization; lattice dynamics; ferroelectrics; phonon dispersion; electron-phonon coupling; GENERALIZED GRADIENT APPROXIMATION; LITHIUM-NIOBATE; TEMPERATURE-DEPENDENCE; DIRECTIONAL DISPERSION; REFRACTIVE-INDEXES; OPTICAL-ABSORPTION; PHASE-TRANSITION; EXCHANGE; GAP; ASSIGNMENT;
D O I
10.1088/0953-8984/27/38/385402
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The vibrational properties of stoichiometric LiNbO3 are analyzed within density-functional perturbation theory in order to obtain the complete phonon dispersion of the material. The phonon density of states of the ferroelectric (paraelectric) phase shows two (one) distinct band gaps separating the high-frequency (similar to 800 cm(-1)) optical branches from the continuum of acoustic and lower optical phonon states. This result leads to specific heat capacites in close agreement with experimental measurements in the range 0-350 K and a Debye temperature of 574 K. The calculated zero-point renormalization of the electronic Kohn-Sham eigenvalues reveals a strong dependence on the phonon wave vectors, especially near Gamma. Integrated over all phonon modes, our results indicate a vibrational correction of the electronic band gap of 0.41 eV at 0 K, which is in excellent agreement with the extrapolated temperature-dependent measurements.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Equations of state for energetic materials from density functional theory with van der Waals, thermal, and zero-point energy corrections
    Landerville, A. C.
    Conroy, M. W.
    Budzevich, M. M.
    Lin, Y.
    White, C. T.
    Oleynik, I. I.
    APPLIED PHYSICS LETTERS, 2010, 97 (25)
  • [42] Analytical expression for the excited-state force from density-functional perturbation theory
    Tsukagoshi, Takayuki
    Sugino, Osamu
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [43] Density functional theory beyond the Born-Oppenheimer approximation: Accurate treatment of the ionic zero-point motion
    Kolesov, Grigory
    Kaxiras, Efthimios
    Manousakis, Efstratios
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [44] Investigation of ferromagnetism in (Mn, Ga) co-doped LiNbO3 by density functional theory
    Lin, Long
    Huang, Jingtao
    Yu, Weiyang
    Zhu, Linghao
    Tao, Hualong
    Wang, Pengtao
    Xu, Yonghao
    Zhang, Zhanying
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 500
  • [45] Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations
    Misquitta, AJ
    Podeszwa, R
    Jeziorski, B
    Szalewicz, K
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (21):
  • [46] Lattice constants from semilocal density functionals with zero-point phonon correction (vol 85, art no 014111, 2012)
    Hao, Pan
    Fang, Yuan
    Sun, Jianwei
    Csonka, Gabor I.
    Philipsen, Pier H. T.
    Perdew, John P.
    PHYSICAL REVIEW B, 2012, 85 (09):
  • [47] Interaction between Bi Dopants and Intrinsic Defects in LiNbO3 from Local and Hybrid Density Functional Theory Calculations
    Li, Lili
    Li, Yanlu
    Zhao, Xian
    INORGANIC CHEMISTRY, 2019, 58 (06) : 3661 - 3669
  • [48] Anharmonic decay of phonons in silicon from third-order density-functional perturbation theory
    Park, YK
    Kim, SI
    Kim, Y
    Kim, EK
    Min, SK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 31 (05) : 764 - 769
  • [49] Magnons from time-dependent density-functional perturbation theory and nonempirical Hubbard functionals
    Luca Binci
    Nicola Marzari
    Iurii Timrov
    npj Computational Materials, 11 (1)
  • [50] Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory
    Sanna, S.
    Schmidt, W. G.
    Rode, S.
    Klassen, S.
    Kuehnle, A.
    PHYSICAL REVIEW B, 2014, 89 (07)