Unconventional quantum optics in topological waveguide QED

被引:156
|
作者
Bello, M. [1 ]
Platero, G. [1 ]
Cirac, J. I. [2 ]
Gonzalez-Tudela, A. [2 ,3 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] CSIC, IFF, Calle Serrano 113b, Madrid 28006, Spain
基金
欧盟地平线“2020”;
关键词
PHOTONS; MODELS; STATES; PHASE;
D O I
10.1126/sciadv.aaw0297
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The discovery of topological materials has motivated recent developments to export topological concepts into photonics to make light behave in exotic ways. Here, we predict several unconventional quantum optical phenomena that occur when quantum emitters interact with a topological waveguide quantum electrodynamics bath, namely, the photonic analog of the Su-Schrieffer-Heeger model. When the emitters' frequency lies within the topological bandgap, a chiral bound state emerges, which is located on just one side (right or left) of the emitter. In the presence of several emitters, this bound state mediates topological, tunable interactions between them, which can give rise to exotic many-body phases such as double Neel ordered states. Furthermore, when the emitters' optical transition is resonant with the bands, we find unconventional scattering properties and different super/subradiant states depending on the band topology. Last, we propose several implementations where these phenomena can be observed with state-of-the-art technology.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Topological multimode waveguide QED
    Vega, C.
    Porras, D.
    Gonzalez-Tudela, A.
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [2] QED OF RESONATORS IN QUANTUM OPTICS
    KNOLL, L
    WELSCH, DG
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 1992, 16 (03) : 135 - 182
  • [3] Unconventional Geometric Quantum Gate in Circuit QED
    Zheng Xiao-Hu
    Dong Jun
    Liu Yu-Wen
    Yang Ming
    Cao Zhuo-Liang
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (07)
  • [4] Nonlinear Optics Quantum Computing with Circuit QED
    Adhikari, Prabin
    Hafezi, Mohammad
    Taylor, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [5] Scheme for unconventional geometric quantum computation in cavity QED
    Feng, Xun-Li
    Wang, Zisheng
    Wu, Chunfeng
    Kwek, L. C.
    Lai, C. H.
    Oh, C. H.
    [J]. PHYSICAL REVIEW A, 2007, 75 (05):
  • [6] A topological quantum optics interface
    Barik, Sabyasachi
    Karasahin, Aziz
    Flower, Christopher
    Cai, Tao
    Miyake, Hirokazu
    DeGottardi, Wade
    Hafezi, Mohammad
    Waks, Edo
    [J]. SCIENCE, 2018, 359 (6376) : 666 - 668
  • [7] Variational Quantum Simulators Based on Waveguide QED
    Tabares, C.
    de las Heras, A. Munoz
    Tagliacozzo, L.
    Porras, D.
    Gonzalez-Tudela, A.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 131 (07)
  • [8] Quantum Electrodynamics in a Topological Waveguide
    Kim, Eunjong
    Zhang, Xueyue
    Ferreira, Vinicius S.
    Banker, Jash
    Iverson, Joseph K.
    Sipahigil, Alp
    Bello, Miguel
    Gonzalez-Tudela, Alejandro
    Mirhosseini, Mohammad
    Painter, Oskar
    [J]. PHYSICAL REVIEW X, 2021, 11 (01)
  • [9] Vacancy-Like Dressed States in Topological Waveguide QED
    Leonforte, Luca
    Carollo, Angelo
    Ciccarello, Francesco
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (06)
  • [10] Unconventional geometric quantum phase gates with a cavity QED system
    Zheng, SB
    [J]. PHYSICAL REVIEW A, 2004, 70 (05): : 052320 - 1