Spin-polarized electron transfer in ferromagnet/C60 interfaces

被引:61
|
作者
Moorsom, Timothy [1 ]
Wheeler, May [1 ]
Khan, Taukeer Mohd [1 ]
Al Ma'Mari, Fatma [1 ]
Kinane, Christian [2 ]
Langridge, Sean [2 ]
Ciudad, David [3 ]
Bedoya-Pinto, Amilcar [3 ]
Hueso, Luis [3 ]
Teobaldi, Gilberto [4 ]
Lazarov, Vlado K. [5 ]
Gilks, Daniel [5 ]
Burnell, Gavin [1 ]
Hickey, Bryan J. [1 ]
Cespedes, Oscar [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[2] Rutherford Appleton Lab, Sci & Technol Facil Council, ISIS, Didcot OX11 0QX, Oxon, England
[3] CIC NanoGUNE, E-20018 Donostia San Sebastian, Spain
[4] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[5] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
C-60;
D O I
10.1103/PhysRevB.90.125311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The contact between a molecule and a metallic electrode contributes to or even determines the characteristics of organic devices, such as their electronic properties. This is partly due to the charge transfer that takes place when two materials with different chemical potentials are put together. In the case of magnetic electrodes, the transfer can be accompanied by the transmission of a net spin polarization or spin doping. In nanocarbon systems, hybridization and spin doping can suppress the moment of a transition metal ferromagnet through the loss of majority spin electrons to the organic. Here, C-60 is shown to become ferromagnetic as a result of spin doping from cobalt with an induced moment of 1.2 mu(B) per cage while suppressing the moment of the ferromagnet by up to 21%. Polarized neutron reflectivity and x-ray magnetic circular dichroism reveal the presence of an antiferromagnetic coupling of the interfacial layers of cobalt and C-60, and weakly coupled induced magnetism propagating into the bulk organic. Thus, it is shown that the deposition of molecules with high electron affinity can be used to induce zero-voltage spin injection.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Spin-polarized scanning electron microscopy
    Kohashi, Teruo
    Advances in Imaging and Electron Physics, 2015, 187 : 83 - 125
  • [32] Spin-Polarized Electron Transport In Silicon
    Appelbaum, Ian
    SIGE, GE, AND RELATED COMPOUNDS 3: MATERIALS, PROCESSING, AND DEVICES, 2008, 16 (10): : 937 - 943
  • [33] SCREENING IN A SPIN-POLARIZED ELECTRON LIQUID
    GUNNARSON, O
    LUNDQVIST, S
    LUNDQVIST, BI
    SOLID STATE COMMUNICATIONS, 1972, 11 (01) : 149 - +
  • [34] Spin-polarized scanning electron microscopy
    Koike, Kazuyuki
    Microscopy, 2013, 62 (01): : 177 - 191
  • [35] Spin-polarized Auger electron spectroscopy
    Pustogowa, U.
    Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82 (12): : 1299 - 1313
  • [36] Spin-polarized scanning electron microscopy
    Koike, Kazuyuki
    MICROSCOPY, 2013, 62 (01) : 177 - 191
  • [37] SPIN-POLARIZED HEAT TRANSPORT IN FERROMAGNET/UNCONVENTIONAL SUPERCONDUCTOR JUNCTIONS
    Yokoyama, T.
    Tanaka, Y.
    CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPRINTRONICS, 2008, : 149 - +
  • [38] Spin-polarized Auger electron spectroscopy
    Pustogowa, U
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2002, 82 (12): : 1299 - 1313
  • [39] SPIN-POLARIZED ELECTRON-TUNNELING
    MESERVEY, R
    TEDROW, PM
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 238 (04): : 173 - 243
  • [40] Spin-polarized scanning electron microscopy
    Allenspach, R
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2000, 44 (04) : 553 - 570