Euler-Poisson system;
relaxation limit;
Drift-diffusion model;
Asymptotic behavior;
Stationary solution;
LARGE TIME BEHAVIOR;
MULTIDIMENSIONAL HYDRODYNAMIC MODEL;
GLOBAL SMOOTH SOLUTIONS;
ASYMPTOTIC-BEHAVIOR;
SEMICONDUCTORS;
EXISTENCE;
PLASMAS;
D O I:
10.1016/j.amc.2015.10.087
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we present a one-dimensional bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the form of bipolar isothermal Euler-Poisson with electric field and frictional damping added to the momentum equations. From proper scaling, when the relaxation time in the bipolar Euler-Poisson system tends to zero, we can obtain the bipolar drift-diffusion equation. First, we show that the solutions to the initial boundary value problems of the bipolar Euler-Poisson system and the corresponding drift-diffusion equation converge to their stationary solutions as time tends to infinity, respectively. Then, it is shown that the solution for the bipolar Euler-Poisson equation converges to that of the corresponding bipolar drift-diffusion equations as the relaxation time tends to zero with the initial layer. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Qufu Normal Univ, Sch Math Sci, Jingxuan Rd, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Jingxuan Rd, Qufu 273165, Shandong, Peoples R China
Liu, Cunming
Sheng, Han
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Jingxuan Rd, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Jingxuan Rd, Qufu 273165, Shandong, Peoples R China
Sheng, Han
APPLIED MATHEMATICS AND OPTIMIZATION,
2024,
89
(03):
机构:
Univ Clermont Ferrand 2, CNRS, UMR 6620, Math Lab, F-63177 Aubiere, FranceUniv Clermont Ferrand 2, CNRS, UMR 6620, Math Lab, F-63177 Aubiere, France
Peng, Yue-Jun
Yang, Yong-Fu
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Sci, Dept Math, Jiangsu 210098, Peoples R China
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaUniv Clermont Ferrand 2, CNRS, UMR 6620, Math Lab, F-63177 Aubiere, France
机构:
East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
Li, Yeping
Lu, Li
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
Nanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R ChinaEast China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China