Gelfand type quasilinear elliptic problems with quadratic gradient terms

被引:8
|
作者
Arcoya, David [1 ]
Carmona, Jose [2 ]
Martinez-Aparicio, Pedro J. [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Almeria, Dept Matemat, La Canada De San Urbano 04120, Almeria, Spain
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30202, Spain
关键词
Gelfand problem; Quasilinear elliptic equations; Quadratic gradient; Stability condition; Extremal solutions; DIRICHLET PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.anihpc.2013.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for 0 < m(1) <= m(x) <= m(2) and positive parameters lambda and p, we study the existence of positive solution for the quasilinear model problem { -Delta u + m(x) vertical bar del u vertical bar(2)/1 + u = lambda(1 + u)(P) in Omega, u = 0 on partial derivative Omega. We prove that the maximal set of lambda for which the problem has at least one positive solution is an interval (0, lambda*], with lambda* > 0, and there exists a minimal regular positive solution for every lambda is an element of (0, lambda*). We also prove, under suitable conditions depending on the dimension N and the parameters p, m(1), m(2), that for lambda = lambda* there exists a minimal regular positive solution. Moreover we characterize minimal solutions as those solutions satisfying a stability condition in the case m(1) = m(2). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:249 / 265
页数:17
相关论文
共 50 条