The Sturm-Liouville Hierarchy of Evolution Equations and Limits of Algebro-Geometric Initial Data

被引:1
|
作者
Johnson, Russell [1 ]
Zampogni, Luca [2 ]
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50121 Florence, Italy
[2] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy
关键词
Sturm-Liouville problem; m-functions; zero-curvature equation; hierarchy of evolution equations; recursion system; SMALL DISPERSION LIMIT; ROTATION NUMBER; OPERATORS;
D O I
10.3842/SIGMA.2014.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sturm-Liouville hierarchy of evolution equations was introduced in [Adv. Nonlinear Stud. 11 (2011), 555-591] and includes the Korteweg-de Vries and the Camassa-Holm hierarchies. We discuss some solutions of this hierarchy which are obtained as limits of algebro- geometric solutions. The initial data of our solutions are (generalized) reflectionless Sturm-Liouville potentials.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Description of the algebro-geometric Sturm-Liouville coefficients
    Johnson, Russell
    Zampogni, Luca
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (03) : 716 - 740
  • [2] The Sturm-Liouville Hierarchy of Evolution Equations
    Johnson, Russell
    Zampogni, Luca
    ADVANCED NONLINEAR STUDIES, 2011, 11 (03) : 555 - 591
  • [3] The Sturm-Liouville Hierarchy of Evolution Equations II
    Johnson, Russell
    Zampogni, Luca
    ADVANCED NONLINEAR STUDIES, 2012, 12 (03) : 501 - 532
  • [4] Algebro-Geometric Solutions to a New Hierarchy of Soliton Equations
    Wang, Hui
    Geng, Xianguo
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2015, 11 (04) : 359 - 398
  • [5] THE ALGEBRO-GEOMETRIC INITIAL VALUE PROBLEM FOR THE ABLOWITZ LADIK HIERARCHY
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) : 151 - 196
  • [6] The algebro-geometric Toda hierarchy initial value problem for complex-valued initial data
    Gesztesy, Fritz
    Holden, Helge
    Teschl, Gerald
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (01) : 117 - 182
  • [7] Algebro-geometric solutions of the Boussinesq hierarchy
    Dickson, R
    Gesztesy, F
    Unterkofler, K
    REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) : 823 - 879
  • [8] ALGEBRO-GEOMETRIC SOLUTIONS OF THE DIRAC HIERARCHY
    Yang, Xiao
    Han, Jiayan
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (03) : 1894 - 1904
  • [9] Algebro-geometric solutions to the Manakov hierarchy
    Wu, Lihua
    Geng, Xianguo
    He, Guoliang
    APPLICABLE ANALYSIS, 2016, 95 (04) : 769 - 800
  • [10] Algebro-Geometric Solutions of the TD Hierarchy
    Xianguo Geng
    Xin Zeng
    Bo Xue
    Mathematical Physics, Analysis and Geometry, 2013, 16 : 229 - 251