3D Printed Anatomical Nerve Regeneration Pathways

被引:238
|
作者
Johnson, Blake N. [1 ,2 ]
Lancaster, Karen Z. [3 ,4 ]
Zhen, Gehua [5 ]
He, Junyun [6 ]
Gupta, Maneesh K. [1 ]
Kong, Yong Lin [1 ]
Engel, Esteban A. [3 ,4 ]
Krick, Kellin D. [7 ]
Ju, Alex [1 ]
Meng, Fanben [1 ]
Enquist, Lynn W. [3 ,4 ]
Jia, Xiaofeng [8 ,9 ]
McAlpine, Michael C. [1 ,10 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Virginia Tech, Dept Ind & Syst Engn, Blacksburg, VA 24061 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[5] Johns Hopkins Univ, Sch Med, Dept Orthoped Surg, Baltimore, MD 21205 USA
[6] Univ Maryland, Sch Med, Dept Neurosurg, Baltimore, MD 21201 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] Univ Maryland, Sch Med, Orthoped, Dept Neurosurg, Baltimore, MD 21201 USA
[9] Johns Hopkins Univ, Sch Med, Dept Biomed Engn Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA
[10] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D printing; 3D scanning; nerve regeneration; neural engineering; tissue engineering; OF-THE-ART; GROWTH-FACTOR; ELECTRONICS; STRATEGIES; HYDROGELS; DELIVERY; RELEASE; REPAIR; POLYMERS; CONDUITS;
D O I
10.1002/adfm.201501760
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 3D printing methodology for the design, optimization, and fabrication of a custom nerve repair technology for the regeneration of complex peripheral nerve injuries containing bifurcating sensory and motor nerve pathways is introduced. The custom scaffolds are deterministically fabricated via a microextrusion printing principle using 3D models, which are reverse engineered from patient anatomies by 3D scanning. The bifurcating pathways are augmented with 3D printed biomimetic physical cues (microgrooves) and path-specific biochemical cues (spatially controlled multicomponent gradients). In vitro studies reveal that 3D printed physical and biochemical cues provide axonal guidance and chemotractant/chemokinetic functionality. In vivo studies examining the regeneration of bifurcated injuries across a 10 mm complex nerve gap in rats showed that the 3D printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve. This approach suggests the potential of 3D printing toward advancing tissue regeneration in terms of: (1) the customization of scaffold geometries to match inherent tissue anatomies; (2) the integration of biomanufacturing approaches with computational modeling for design, analysis, and optimization; and (3) the enhancement of device properties with spatially controlled physical and biochemical functionalities, all enabled by the same 3D printing process.
引用
收藏
页码:6205 / 6217
页数:13
相关论文
共 50 条
  • [31] 3D Printed Scaffolds with Controlled Release of Dexamethasone for Bone Regeneration
    Costa, P.
    Puga, A.
    Concheiro, A.
    Busch, D.
    van Griensven, M.
    Alvarez-Lorenzo, C.
    TISSUE ENGINEERING PART A, 2014, 20 : S56 - S57
  • [32] 3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration
    Zhou, Xuan
    Esworthy, Timothy
    Lee, Se-Jun
    Miao, Shida
    Cui, Haitao
    Plesiniak, Michael
    Fenniri, Hicham
    Webster, Thomas
    Rao, Raj D.
    Zhang, Lijie Grace
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2019, 19 (58-70) : 58 - 70
  • [33] 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration
    Wang, Yihan
    Xie, Changnan
    Zhang, Zhiming
    Liu, Haining
    Xu, Haixia
    Peng, Ziyue
    Liu, Chun
    Li, Jianjun
    Wang, Chengqiang
    Xu, Tao
    Zhu, Lixin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (26) : 29506 - 29520
  • [34] 3D Printed Bioactive Nanostructured Scaffolds for Enhanced Osteochondral Regeneration
    Castro, N. J.
    Zhang, L. G.
    TISSUE ENGINEERING PART A, 2014, 20 : S86 - S86
  • [35] Three Dimensional (3D) reconstruction of the anatomical course of the Phrenic Nerve
    Schmidt, B.
    Chun, K. R. J.
    Ernst, S.
    Ouyang, F.
    Antz, M.
    Kuck, K. H.
    EUROPEAN HEART JOURNAL, 2006, 27 : 729 - 729
  • [36] Comparison of 3D printed anatomical model qualities in acetabular fracture representation
    Salazar, David A.
    Cramer, Justin
    Markin, Nicholas W.
    Hunt, Nathaniel H.
    Linke, Gabe
    Siebler, Justin
    Zuniga, Jorge
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (07)
  • [37] 3D Printed Anatomical Model for Surgical Planning: a Pediatric Hospital Experience
    Formisano, M.
    Iuppariello, L.
    Mirone, G.
    Cinalli, G.
    Casaburi, A.
    Guida, P.
    Clemente, F.
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [38] NERVE REGENERATION BY BIO 3D NERVE CONDUIT USING A BIO-3D PRINTER FOR PERIPHERAL NERVE INJURY
    Ikeguchi, R.
    Aoyama, T.
    Noguchi, T.
    Yoshimoto, K.
    Sakamoto, D.
    Iwai, T.
    Fujita, K.
    Akieda, S.
    Nakayama, K.
    Matsuda, S.
    WOUND REPAIR AND REGENERATION, 2024, 32 (04) : 603 - 603
  • [39] Nerve regeneration by Bio 3D nerve conduit using a bio-3D printer for peripheral nerve injury
    Ikeguchi, Ryosuke
    Aoyama, Tomoki
    Noguchi, Takashi
    Ando, Maki
    Yoshimoto, Koichi
    Sakamoto, Daichi
    Lwai, Terunobu
    Akieda, Shizuka
    Nakayama, Koichi
    Matsuda, Shuichi
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [40] Creation of 3D Printed Anatomical Models for Teaching Purposes of Dentistry Students
    Petkova, Viktoria
    Dukov, Nikolay
    2024 12TH E-HEALTH AND BIOENGINEERING CONFERENCE, EHB 2024, 2024, : 361 - 364