Mangrove Species Mapping in Kuala Sepetang Mangrove Forest, Perak using High Resolution Airborne Data

被引:0
|
作者
Beh, B. C. [1 ]
MatJafri, M. Z. [1 ]
Lim, H. S. [1 ]
机构
[1] Univ Sains Malaysia, Sch Phys, George Town 11800, Malaysia
关键词
Mangrove vegetation; airborne data; Kuala Sepetang Mangrove Forest Reserve; mangrove species mapping; retrieved surface reflectance; Geomatica 2013 software package;
D O I
10.1117/12.2195435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mangrove vegetation is widely employed and studied as it is a unique ecosystem which is able to provide plenty of goods and applications to our country. In this paper, high resolution airborne image data obtained the flight mission on Kuala Sepetang Mangrove Forest Reserve, Perak, Malaysia will be used for mangrove species mapping. Supervised classification using the retrieved surface reflectance will be performed to classify the airborne data using Geomatica 2013 software package. The ground truth data will be used to validate the classification accuracy. High correlation of R-2=0.873 was achieved in this study indicate that high resolution airborne data is reliable and suitable used for mangrove species mapping.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [21] Mapping mangrove alliances using historical data in Fiji
    Murray, Brent A.
    Sims, Neil
    Storie, Joni
    JOURNAL OF COASTAL CONSERVATION, 2022, 26 (05)
  • [22] High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing
    Held, A
    Ticehurst, C
    Lymburner, L
    Williams, N
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (13) : 2739 - 2759
  • [23] Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data
    Jia, Mingming
    Zhang, Yuanzhi
    Wang, Zongming
    Song, Kaishan
    Ren, Chunying
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 33 : 226 - 231
  • [24] EXPLORING THE CAPABILITIES OF COMBINING THE SENTINEL-2 MSI DATA AND HIGH RESOLUTION GOOGLE EARTH IMAGE FOR MAPPING MANGROVE SPECIES
    Li, Hongzhong
    Han, Yu
    Chen, Jinsong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6879 - 6882
  • [25] Mapping discourses using Q methodology in Matang Mangrove Forest, Malaysia
    Huge, Jean
    Vande Velde, Katherine
    Benitez-Capistros, Francisco
    Japay, Jan Harold
    Satyanarayana, Behara
    Ishak, Mohammad Nazrin
    Quispe-Zuniga, Melissa
    Lokman, Bin Husain Mohd
    Sulong, Ibrahim
    Koedam, Nico
    Dahdouh-Guebas, Farid
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 183 : 988 - 997
  • [26] Mangrove species mapping through phenological analysis using random forest algorithm on Google Earth Engine
    Aji, Muhammad Ari Purnomo
    Kamal, Muhammad
    Farda, Nur Mohammad
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 30
  • [27] Evaluation of Morphological Texture Features for Mangrove Forest Mapping and Species Discrimination Using Multispectral IKONOS Imagery
    Huang, Xin
    Zhang, Liangpei
    Wang, Le
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) : 393 - 397
  • [28] Mapping of mangrove extent and zonation using high and low tide composites of Landsat data
    Kerrylee Rogers
    Leo Lymburner
    Rafaela Salum
    Brendan P. Brooke
    Colin D. Woodroffe
    Hydrobiologia, 2017, 803 : 49 - 68
  • [29] Mapping of mangrove extent and zonation using high and low tide composites of Landsat data
    Rogers, Kerrylee
    Lymburner, Leo
    Salum, Rafaela
    Brooke, Brendan P.
    Woodroffe, Colin D.
    HYDROBIOLOGIA, 2017, 803 (01) : 49 - 68
  • [30] A post-classifier for mangrove mapping using ecological data
    Vaiphasa, Chaichoke
    Skidmore, Andrew K.
    de Boer, Willem F.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2006, 61 (01) : 1 - 10