The Fredholm alternative for the p-Laplacian in exterior domains

被引:5
|
作者
Drabek, Pavel [1 ]
Ho, Ky [2 ]
Sarkar, Abhishek [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Nong Lam Univ, Linh Trung Ward, Fac Sci, Dept Math, Ho Chi Minh City, Vietnam
[3] Univ West Bohemia, NTIS, Tech 8, Plzen 30614, Czech Republic
关键词
p-Laplacian; Fredholm alternative; The first eigenvalue; Exterior domain; Variational method; ELLIPTIC-EQUATIONS; PRINCIPAL EIGENVALUE; MAXIMUM PRINCIPLE; 1ST EIGENVALUE; OPERATOR;
D O I
10.1016/j.na.2018.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Fredholm alternative for the p-Laplacian in an exterior domain which is the complement of the closed unit ball in R-N (N >= 2). By employing techniques of Calculus of Variations we obtain the multiplicity of solutions. The striking difference between our case and the entire space case is also discussed. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 53
页数:37
相关论文
共 50 条
  • [31] Principal Eigenvalue of p-Laplacian Operator in Exterior Domain
    Chhetri, Maya
    Drabek, Pavel
    [J]. RESULTS IN MATHEMATICS, 2014, 66 (3-4) : 461 - 468
  • [32] Principal Eigenvalue of p-Laplacian Operator in Exterior Domain
    Maya Chhetri
    Pavel Drábek
    [J]. Results in Mathematics, 2014, 66 : 461 - 468
  • [33] Asymptotic analysis of the p-Laplacian flow in an exterior domain
    Gabriel Iagar, Razvan
    Luis Vazquez, Juan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 497 - 520
  • [34] Hardy Inequalities for Finsler p-Laplacian in the Exterior Domain
    Kaushik Bal
    [J]. Mediterranean Journal of Mathematics, 2017, 14
  • [35] Equations of p-Laplacian type in unbounded domains
    De Nápoli, PL
    Mariani, MC
    [J]. ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 237 - 250
  • [36] EIGENVALUES OF THE FINSLER p-LAPLACIAN ON VARYING DOMAINS
    di Blasio, Giuseppina
    Lamberti, Pier Domenico
    [J]. MATHEMATIKA, 2020, 66 (03) : 765 - 776
  • [37] A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball
    Shivaji, R.
    Sim, Inbo
    Son, Byungjae
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 459 - 475
  • [38] The p-Laplacian in domains with small random holes.
    Balzano, M
    Durante, T
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (02): : 435 - 458
  • [39] NONLINEAR P-LAPLACIAN PROBLEMS ON UNBOUNDED-DOMAINS
    YU, LS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (04) : 1037 - 1045
  • [40] Monotonicity results for the fractional p-Laplacian in unbounded domains
    Wu, Leyun
    Yu, Mei
    Zhang, Binlin
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2021, 11 (02)