Parabolic Foliations on Three-Manifolds

被引:0
|
作者
Krouglov, V. [1 ]
机构
[1] Natl Acad Sci Ukraine, Div Math, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
关键词
parabolic foliation; extrinsic curvature;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every closed orientable three-manifold admits a parabolic foliation.
引用
收藏
页码:170 / 191
页数:22
相关论文
共 50 条
  • [1] On codimension one foliations with Morse singularities on three-manifolds
    Camacho, Cesar
    Scardua, Bruno Azevedo
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1032 - 1040
  • [2] On the resolution of singularities of one-dimensional foliations on three-manifolds
    Rebelo, Julio C.
    Reis, H.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (02) : 291 - 355
  • [3] Non-existence of geometric minimal foliations in hyperbolic three-manifolds
    Wolf, Michael
    Wu, Yunhui
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (01) : 167 - 182
  • [4] Localization on three-manifolds
    Alday, Luis F.
    Martelli, Dario
    Richmond, Paul
    Sparks, James
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [5] Localization on three-manifolds
    Luis F. Alday
    Dario Martelli
    Paul Richmond
    James Sparks
    [J]. Journal of High Energy Physics, 2013
  • [6] Examples of Lorentzian geodesible foliations of closed three-manifolds having Heegaard splittings of genus one
    Yokumoto, K
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (03) : 423 - 443
  • [7] Complexity of geometric three-manifolds
    Martelli, B
    Petronio, C
    [J]. GEOMETRIAE DEDICATA, 2004, 108 (01) : 15 - 69
  • [8] PLANAR SURFACES IN THREE-MANIFOLDS
    Sbrodova, E. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 451 - 463
  • [9] Complexity of Geometric Three-manifolds
    Bruno Martelli
    Carlo Petronio
    [J]. Geometriae Dedicata, 2004, 108 : 15 - 69
  • [10] Linking Numbers in Three-Manifolds
    Patricia Cahn
    Alexandra Kjuchukova
    [J]. Discrete & Computational Geometry, 2021, 66 : 435 - 463