Localization on three-manifolds

被引:61
|
作者
Alday, Luis F. [1 ]
Martelli, Dario [2 ]
Richmond, Paul [1 ]
Sparks, James [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Kings Coll London, Dept Math, Strand, London WC2R 2LS, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Supersymmetric gauge theory; Chern-Simons Theories; VOLUME MINIMIZATION;
D O I
10.1007/JHEP10(2013)095
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with a contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large N limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Localization on three-manifolds
    Luis F. Alday
    Dario Martelli
    Paul Richmond
    James Sparks
    [J]. Journal of High Energy Physics, 2013
  • [2] Complexity of geometric three-manifolds
    Martelli, B
    Petronio, C
    [J]. GEOMETRIAE DEDICATA, 2004, 108 (01) : 15 - 69
  • [3] PLANAR SURFACES IN THREE-MANIFOLDS
    Sbrodova, E. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 451 - 463
  • [4] Complexity of Geometric Three-manifolds
    Bruno Martelli
    Carlo Petronio
    [J]. Geometriae Dedicata, 2004, 108 : 15 - 69
  • [5] Linking Numbers in Three-Manifolds
    Patricia Cahn
    Alexandra Kjuchukova
    [J]. Discrete & Computational Geometry, 2021, 66 : 435 - 463
  • [6] Linking Numbers in Three-Manifolds
    Cahn, Patricia
    Kjuchukova, Alexandra
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (02) : 435 - 463
  • [7] Parabolic Foliations on Three-Manifolds
    Krouglov, V.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2009, 5 (02) : 170 - 191
  • [8] A model for random three-manifolds
    Petri, Bram
    Raimbault, Jean
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (04) : 729 - 768
  • [9] THE EXTENDED COMPLEXITY OF THREE-MANIFOLDS
    Shatnykh, O.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 194 - 195
  • [10] STABLE INDECOMPOSABILITY OF THREE-MANIFOLDS
    Hamilton, M. J. D.
    Kotschick, D.
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (02) : 27 - 28