An approximation scheme for the time fractional convection-diffusion equation

被引:31
|
作者
Zhang, Juan [1 ]
Zhang, Xindong [1 ]
Yang, Bohui [1 ]
机构
[1] Xinjiang Normal Univ, Coll Math Sci, Urumqi 830017, Xinjiang, Peoples R China
关键词
Time fractional convection-diffusion equation; Caputo derivative; Stability; Convergence; Finite difference method; FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATION; NONLINEAR SOURCE-TERM; SPACE;
D O I
10.1016/j.amc.2018.04.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discrete form is proposed for solving time fractional convection-diffusion equation. Firstly, we obtain a time discrete scheme based on finite difference method. Secondly, we prove that the time discrete scheme is unconditionally stable, and the numerical solution converges to the exact one with order O(tau(2-infinity)), where tau is the time step size. Finally, two numerical examples are proposed respectively, to verify the order of convergence. (C) 2018 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [41] Sinc-Galerkin method for solving the time fractional convection-diffusion equation with variable coefficients
    Chen, Li Juan
    Li, MingZhu
    Xu, Qiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [42] Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation
    Li, Jin
    Cheng, Yongling
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (07): : 4034 - 4056
  • [43] DOUBLE EXPONENTIAL EULER SINC COLLOCATION METHOD FOR A TIME-FRACTIONAL CONVECTION-DIFFUSION EQUATION
    Eftekhari, Ali
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (04): : 745 - 753
  • [44] Bernstein Polynomials Method for Fractional Convection-Diffusion Equation with Variable Coefficients
    Chen, Yiming
    Yi, Mingxu
    Chen, Chen
    Yu, Chunxiao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 83 (06): : 639 - 653
  • [45] Numerical solution of a non-local fractional convection-diffusion equation
    Osorio, F. C.
    Amador, P. A.
    Bedoya, C. A.
    ENTRE CIENCIA E INGENIERIA, 2024, 18 (35): : 25 - 31
  • [46] Modelling of the Convection-Diffusion Equation through Fractional Restricted Calculus of Variations
    Cresson, Jacky
    Jimenez, Fernando
    Ober-Blobaum, Sina
    IFAC PAPERSONLINE, 2021, 54 (09): : 482 - 487
  • [47] Wavelet method for a class of fractional convection-diffusion equation with variable coefficients
    Chen, Yiming
    Wu, Yongbing
    Cui, Yuhuan
    Wang, Zhuangzhuang
    Jin, Dongmei
    JOURNAL OF COMPUTATIONAL SCIENCE, 2010, 1 (03) : 146 - 149
  • [48] A Weighted Average Finite Difference Method for the Fractional Convection-Diffusion Equation
    Su, Lijuan
    Cheng, Pei
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [49] A computational approach for fractional convection-diffusion equation via integral transforms
    Singh, Jagdev
    Swroop, Ram
    Kumar, Devendra
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1019 - 1028
  • [50] CENTRAL DIFFERENCE-LIKE APPROXIMATION FOR THE SOLUTION OF THE CONVECTION-DIFFUSION EQUATION
    TZANOS, CP
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1990, 18 (01) : 97 - 112