Short-term wind speed forecasting using ST-LSSVM hybrid model

被引:0
|
作者
Yuan, Deyu
Qian, Zheng
Jing, Bo
Pei, Yan
机构
来源
2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) | 2018年
关键词
EEMD; state transition method; short-term wind speed forecasting; wind energy; FEATURE-SELECTION; DECOMPOSITION; PREDICTION; OPTIMIZATION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid growth of wind power, wind speed forecasting becomes more and more significant to ensure stable and efficient operations of wind power system. This paper proposes an improved hybrid methodology for short-term wind speed forecasting. After data preprocessing, MI algorithm is used to select proper wind speed features, then Ensemble Empirical Mode Decomposition ( EEMD) is utilized to decompose the original wind speed series in order to make the chaotic series more stable. A novel model named ST-LSSVM is proposed to forecast the decomposed sub-series, which combines the Least Squares Support Vector Machine ( LSSVM) and State Transition method ( ST). In order to further enhance the model performance, Particle Swarm Optimization ( PSO) is utilized to fine-tune the parameter values of the ST-LSSVM. Finally, real world wind speed data are used to estimate the proposed hybrid forecasting model. The results demonstrate that proposed ST-LSSVM hybrid model has the best prediction accuracy in one to six step's forecasting, compared with Persistence, Autoregressive Integrated Moving Average ( ARIMA), Back-Propagation Neutral Network ( BPNN) and Least Squares Support Vector Machine ( LSSVM) models.
引用
收藏
页码:1661 / 1667
页数:7
相关论文
共 50 条
  • [21] An adaptive hybrid model for short term wind speed forecasting
    Zhang, Jinliang
    Wei, Yiming
    Tan, Zhongfu
    ENERGY, 2020, 190
  • [22] Forecasting Short-Term Wind Speed Based on IEWT-LSSVM model Optimized by Bird Swarm Algorithm
    Xiang, Ling
    Deng, Zeqi
    Hu, Aijun
    IEEE ACCESS, 2019, 7 : 59333 - 59345
  • [23] Short-Term Wind Speed Forecasting Using a Multi-model Ensemble
    Zhang, Chi
    Wei, Haikun
    Liu, Tianhong
    Zhu, Tingting
    Zhang, Kanjian
    ADVANCES IN NEURAL NETWORKS - ISNN 2015, 2015, 9377 : 398 - 406
  • [24] A new hybrid iterative method for short-term wind speed forecasting
    Amjady, Nima
    Keynia, Farshid
    Zareipour, Hamidreza
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2011, 21 (01): : 581 - 595
  • [25] Multistep short-term wind speed forecasting using transformer
    Wu, Huijuan
    Meng, Keqilao
    Fan, Daoerji
    Zhang, Zhanqiang
    Liu, Qing
    ENERGY, 2022, 261
  • [26] Short-Term Wind Speed Forecasting Using Ensemble Learning
    Karthikeyan, M.
    Rengaraj, R.
    2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2021, : 502 - 506
  • [27] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [28] A novel hybrid model for short-term wind power forecasting
    Du, Pei
    Wang, Jianzhou
    Yang, Wendong
    Niu, Tong
    APPLIED SOFT COMPUTING, 2019, 80 : 93 - 106
  • [29] Short-term wind speed forecasting in Germany
    Ambach, Daniel
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (02) : 351 - 369
  • [30] Short-Term Wind Speed Forecasting Study and Its Application Using a Hybrid Model Optimized by Cuckoo Search
    Chen, Xuejun
    Jin, Shiqiang
    Qin, Shanshan
    Li, Laping
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015