This paper proposes an effective preprocessing procedure for current manifold learning algorithms, such as LLE and ISOMAP, in order to make the reconstruction more robust to noise and outliers. Given a set of noisy data sampled from an underlying manifold, we first detect outliers by histogram analysis of the neighborhood distances of data points. The linear error-in-variables (EIV) model is then applied in each region to compute the locally smoothed values of data. Finally a number of locally smoothed values of each sample are combined together to obtain the global estimate of its noise-free coordinates. The fusion process is weighted by the fitness of EIV model in each region to account for the variation of curvatures of the manifold. Experimental results demonstrate that our preprocessing procedure enables the current manifold learning algorithms to achieve more robust and accurate reconstruction of nonlinear manifolds.
机构:
Chongqing Normal Univ, Coll Intelligent Sci, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
Chongqing Normal Univ, Chongqing Engn Res Ctr Educ Big Data Intelligent, Chongqing 401331, Peoples R ChinaChongqing Normal Univ, Coll Intelligent Sci, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
Ran, Ruisheng
Feng, Ji
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Coll Comp & Informat Sci, Chongqing 401331, Peoples R ChinaChongqing Normal Univ, Coll Intelligent Sci, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
Feng, Ji
Zhang, Shougui
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R ChinaChongqing Normal Univ, Coll Intelligent Sci, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
Zhang, Shougui
Fang, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R ChinaChongqing Normal Univ, Coll Intelligent Sci, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
机构:
China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Song, Wenhui
Zhang, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChina Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Zhang, Xin
Yang, Guozhu
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Gen Aviat Co Ltd, Beijing 102209, Peoples R ChinaChina Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Yang, Guozhu
Chen, Yijin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Chen, Yijin
Wang, Lianchao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Wang, Lianchao
Xu, Hanghang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
机构:
Univ Politecn Catalunya BarcelonaTech, LaCaN, Dept Appl Math 3, Barcelona 08034, SpainUniv Politecn Catalunya BarcelonaTech, LaCaN, Dept Appl Math 3, Barcelona 08034, Spain
Millan, Daniel
Arroyo, Marino
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Catalunya BarcelonaTech, LaCaN, Dept Appl Math 3, Barcelona 08034, SpainUniv Politecn Catalunya BarcelonaTech, LaCaN, Dept Appl Math 3, Barcelona 08034, Spain